The outcome of natural enemy attack in insects is commonly impacted by the presence of defensive microbial symbionts residing within the host. The thermal environment is a factor known to affect symbiont-mediated traits in insects. Lower temperatures, for instance, have been shown to reduce Spiroplasma-mediated protection in Drosophila.
View Article and Find Full Text PDFThe outcome of natural enemy attack in insects is commonly influenced by the presence of protective symbionts in the host. The degree to which protection functions in natural populations, however, will depend on the robustness of the phenotype and symbiosis to variation in the abiotic environment. We studied the impact of a key environmental parameter-temperature-on the efficacy of the protective effect of the symbiont Spiroplasma on its host Drosophila hydei, against attack by the parasitoid wasp Leptopilina heterotoma.
View Article and Find Full Text PDFWhen a parasite attacks an insect, the outcome is commonly modulated by the presence of defensive heritable symbionts residing within the insect host. Previous studies noted markedly different strengths of Spiroplasma-mediated fly survival following attack by the same strain of wasp. One difference between the two studies was the strain of Spiroplasma used.
View Article and Find Full Text PDFThe ability of an insect to survive attack by natural enemies can be modulated by the presence of defensive symbionts. Study of aphid-symbiont-enemy interactions has indicated that protection may depend on the interplay of symbiont, host and attacking parasite genotypes. However, the importance of these interactions is poorly understood outside of this model system.
View Article and Find Full Text PDF