Publications by authors named "Jordan DeKraker"

Article Synopsis
  • Hippocampal sclerosis (HS) is a major cause of temporal lobe epilepsy (TLE) but can be hard to detect on MRI, leading to surgical delays, so researchers created open-source software to improve diagnosis.
  • The study involved 365 participants, using the software HippUnfold to analyze MRI scans and develop a logistic regression model that accurately identifies and localizes HS.
  • The classifier showed high accuracy in detecting HS in both initial and independent patient cohorts, proving effective for individual assessments by comparing patient data with normative growth patterns.
View Article and Find Full Text PDF
Article Synopsis
  • ! Drug-resistant temporal lobe epilepsy (TLE) is linked with damage in the hippocampus, but research is starting to view it as a wider network issue rather than just localized pathology. * ! A study involving 94 patients assessed the relationship between the brain's functional networks and areas of hippocampal atrophy, revealing two distinct brain networks connected to those atrophied areas. * ! The findings highlight that one network correlates positively with certain brain regions (temporolimbic, medial prefrontal, parietal), while another shows negative correlations with frontoparietal regions, suggesting complex interactions in TLE beyond the hippocampus. *
View Article and Find Full Text PDF

Declarative memory encompasses episodic and semantic divisions. Episodic memory captures singular events with specific spatiotemporal relationships, whereas semantic memory houses context-independent knowledge. Behavioural and functional neuroimaging studies have revealed common and distinct neural substrates of both memory systems, implicating mesiotemporal lobe (MTL) regions such as the hippocampus and distributed neocortices.

View Article and Find Full Text PDF

While the hippocampus is key for human cognitive abilities, it is also a phylogenetically old cortex and paradoxically considered evolutionarily preserved. Here, we introduce a comparative framework to quantify preservation and reconfiguration of hippocampal organisation in primate evolution, by analysing the hippocampus as an unfolded cortical surface that is geometrically matched across species. Our findings revealed an overall conservation of hippocampal macro- and micro-structure, which shows anterior-posterior and, perpendicularly, subfield-related organisational axes in both humans and macaques.

View Article and Find Full Text PDF

Background And Objectives: Neuroimaging studies in patients with temporal lobe epilepsy (TLE) show widespread brain network alterations beyond the mesiotemporal lobe. Despite the critical role of the cerebrovascular system in maintaining whole-brain structure and function, changes in cerebral blood flow (CBF) remain incompletely understood in the disease. Here, we studied whole-brain perfusion and vascular network alterations in TLE and assessed its associations with gray and white matter compromises and various clinical variables.

View Article and Find Full Text PDF
Article Synopsis
  • Network neuroscience helps us understand how the brain is organized, but we still lack complete knowledge about how brain lesions affect it.
  • The study focuses on patients with drug-resistant temporal lobe epilepsy (TLE) who underwent surgery, analyzing changes in their brain’s structural connections before and after surgery.
  • Results showed significant changes in brain connectivity patterns related to the surgery, highlighting a shift from segregated to more integrated connections in brain regions, and revealing links to patient clinical outcomes.
View Article and Find Full Text PDF

Objective: Temporal lobe epilepsy (TLE) is typically associated with pathology of the hippocampus, a key structure involved in relational memory, including episodic, semantic, and spatial memory processes. While it is widely accepted that TLE-associated hippocampal alterations underlie memory deficits, it remains unclear whether impairments relate to a specific cognitive domain or multiple ones.

Methods: We administered a recently validated task paradigm to evaluate episodic, semantic, and spatial memory in 24 pharmacoresistant TLE patients and 50 age- and sex-matched healthy controls.

View Article and Find Full Text PDF

Temporal lobe epilepsy (TLE) is the most common pharmaco-resistant epilepsy in adults. While primarily associated with mesiotemporal pathology, recent evidence suggests that brain alterations in TLE extend beyond the paralimbic epicenter and impact macroscale function and cognitive functions, particularly memory. Using connectome-wide manifold learning and generative models of effective connectivity, we examined functional topography and directional signal flow patterns between large-scale neural circuits in TLE at rest.

View Article and Find Full Text PDF

We present a comprehensive study on the non-invasive measurement of hippocampal perfusion. Using high-resolution 7 tesla arterial spin labeling (ASL) data, we generated robust perfusion maps and observed significant variations in perfusion among hippocampal subfields, with CA1 exhibiting the lowest perfusion levels. Notably, these perfusion differences were robust and already detectable with 50 perfusion-weighted images per subject, acquired in 5 min.

View Article and Find Full Text PDF

The hippocampus is largely recognized for its integral contributions to memory processing. By contrast, its role in perceptual processing remains less clear. Hippocampal properties vary along the anterior-posterior (AP) axis.

View Article and Find Full Text PDF

The hippocampus is an archicortical structure, consisting of subfields with unique circuits. Understanding its microstructure, as proxied by these subfields, can improve our mechanistic understanding of learning and memory and has clinical potential for several neurological disorders. One prominent issue is how to parcellate, register, or retrieve homologous points between two hippocampi with grossly different morphologies.

View Article and Find Full Text PDF

The hippocampus is classically divided into mesoscopic subfields which contain varying microstructure that contribute to their unique functional roles. It has been challenging to characterize this microstructure with current magnetic resonance based neuroimaging techniques. In this work, we used diffusion magnetic resonance imaging (dMRI) and a novel surface-based approach in the hippocampus which revealed distinct microstructural distributions of neurite density and dispersion, T1w/T2w ratio as a proxy for myelin content, fractional anisotropy, and mean diffusivity.

View Article and Find Full Text PDF

We present a comprehensive study on the non-invasive measurement of hippocampal perfusion. Using high-resolution 7 Tesla arterial spin labelling data, we generated robust perfusion maps and observed significant variations in perfusion among hippocampal subfields, with CA1 exhibiting the lowest perfusion levels. Notably, these perfusion differences were robust and detectable even within five minutes and just fifty perfusion-weighted images per subject.

View Article and Find Full Text PDF

Temporal lobe epilepsy (TLE) is one of the most common pharmaco-resistant epilepsies in adults. While hippocampal pathology is the hallmark of this condition, emerging evidence indicates that brain alterations extend beyond the mesiotemporal epicenter and affect macroscale brain function and cognition. We studied macroscale functional reorganization in TLE, explored structural substrates, and examined cognitive associations.

View Article and Find Full Text PDF

Objective: Temporal lobe epilepsy (TLE) is the most common pharmacoresistant epilepsy in adults. Here we profiled local neural function in TLE in vivo, building on prior evidence that has identified widespread structural alterations. Using resting-state functional magnetic resonance imaging (rs-fMRI), we mapped the whole-brain intrinsic neural timescales (INT), which reflect temporal hierarchies of neural processing.

View Article and Find Full Text PDF

Like neocortical structures, the archicortical hippocampus differs in its folding patterns across individuals. Here, we present an automated and robust BIDS-App, HippUnfold, for defining and indexing individual-specific hippocampal folding in MRI, analogous to popular tools used in neocortical reconstruction. Such tailoring is critical for inter-individual alignment, with topology serving as the basis for homology.

View Article and Find Full Text PDF

Multimodal magnetic resonance imaging (MRI) has accelerated human neuroscience by fostering the analysis of brain microstructure, geometry, function, and connectivity across multiple scales and in living brains. The richness and complexity of multimodal neuroimaging, however, demands processing methods to integrate information across modalities and to consolidate findings across different spatial scales. Here, we present micapipe, an open processing pipeline for multimodal MRI datasets.

View Article and Find Full Text PDF

Neuroimaging stands to benefit from emerging ultrahigh-resolution 3D histological atlases of the human brain; the first of which is 'BigBrain'. Here, we review recent methodological advances for the integration of BigBrain with multi-modal neuroimaging and introduce a toolbox, 'BigBrainWarp', that combines these developments. The aim of BigBrainWarp is to simplify workflows and support the adoption of best practices.

View Article and Find Full Text PDF

Though it is often termed 'subcortical,' the hippocampus is composed of a folded 'archicortical' sheet contiguous with the neocortex. The human hippocampus varies considerably in its internal folding configuration, creating major challenges in interindividual alignment and parcellation into subfields. In this opinion article, we discuss surface-based methods that aim to explicitly model hippocampal folding, similar to methods used in the neocortex, allowing interindividual alignment in an unfolded or flat-mapped 2D space.

View Article and Find Full Text PDF

The mesiotemporal lobe (MTL) is implicated in many cognitive processes, is compromised in numerous brain disorders, and exhibits a gradual cytoarchitectural transition from six-layered parahippocampal isocortex to three-layered hippocampal allocortex. Leveraging an ultra-high-resolution histological reconstruction of a human brain, our study showed that the dominant axis of MTL cytoarchitectural differentiation follows the iso-to-allocortical transition and depth-specific variations in neuronal density. Projecting the histology-derived MTL model to in-vivo functional MRI, we furthermore determined how its cytoarchitecture underpins its intrinsic effective connectivity and association to large-scale networks.

View Article and Find Full Text PDF

Brain atlases that encompass detailed anatomical or physiological features are instrumental in the research and surgical planning of various neurological conditions. Magnetic resonance imaging (MRI) has played important roles in neuro-image analysis while histological data remain crucial as a gold standard to guide and validate such analyses. With cellular-scale resolution, the BigBrain atlas offers 3D histology of a complete human brain, and is highly valuable to the research and clinical community.

View Article and Find Full Text PDF

Introduction: Heterogeneity of segmentation protocols for medial temporal lobe regions and hippocampal subfields on magnetic resonance imaging hinders the ability to integrate findings across studies. We aim to develop a harmonized protocol based on expert consensus and histological evidence.

Methods: Our international working group, funded by the EU Joint Programme-Neurodegenerative Disease Research (JPND), is working toward the production of a reliable, validated, harmonized protocol for segmentation of medial temporal lobe regions.

View Article and Find Full Text PDF

The hippocampus, like the neocortex, has a morphological structure that is complex and variable in its folding pattern, especially in the hippocampal head. The current study presents a computational method to unfold hippocampal grey matter, with a particular focus on the hippocampal head where complexity is highest due to medial curving of the structure and the variable presence of digitations. This unfolding was performed on segmentations from high-resolution, T2-weighted 7T MRI data from 12 healthy participants and one surgical patient with epilepsy whose resected hippocampal tissue was used for histological validation.

View Article and Find Full Text PDF

Studies demonstrating a mnemonic benefit for encoding words in a survival scenario have revived interest in how human memory is shaped by evolutionary pressures. Prior work on the survival-processing advantage has largely examined cognitive factors as potential proximate mechanisms. The current study, by contrast, focused on the role of perceived threat.

View Article and Find Full Text PDF

Systemic administration of the noncompetitive N-methyl-D-aspartate (NMDA)- receptor antagonist, MK-801, has been proposed to model cognitive deficits similar to those seen in patients with schizophrenia. Evidence has shown that MK-801 increases the probability of operant responding during extinction, possibly modeling perseveration, as would be seen in patients with schizophrenia. This MK-801-induced behavioral perseveration is reversed by dopamine receptor antagonism.

View Article and Find Full Text PDF