The catalytic efficiency and unrivaled selectivity with which enzymes convert substrates to products have been tapped for widespread chemical transformations within biomedical technology, biofuel production, gas sensing, and the upgrading of commodity chemicals, just to name a few. However, the feasibility of enzymes implementation is challenged by the lack of reusability and loss of native catalytic activity due to the irreversible biocatalyst denaturation at high temperatures and in the presence of industrial solvents. Enzyme immobilization, a prerequisite for enzyme reusability, offers controllable strategies for increased functional viability of the biocatalyst in a synthetic environment.
View Article and Find Full Text PDFBiosensors (Basel)
January 2022
Enzymes are proteins that control the efficiency and effectiveness of biological reactions and systems, as well as of engineered biomimetic processes. This review highlights current applications of a diverse range of enzymes for biofuel production, plastics, and chemical waste management, as well as for detergent, textile, and food production and preservation industries respectively. Challenges regarding the transposition of enzymes from their natural purpose and environment into synthetic practice are discussed.
View Article and Find Full Text PDFFlavonoids are a class of specialized metabolites with subclasses including flavonols and anthocyanins, which have unique properties as antioxidants. Flavonoids modulate plant development, but whether and how they impact lateral root development is unclear. We examined potential roles for flavonols in this process using Arabidopsis thaliana mutants with defects in genes encoding key enzymes in flavonoid biosynthesis.
View Article and Find Full Text PDFWe analyzed effects of peer teaching on non-science major undergraduates' knowledge, perceptions, and opinions about genetically modified (GM) crops and their use in agriculture. Undergraduates enrolled in an introductory nonmajors biology course participated in a service-learning program (SLP) in which they acted as cross-age peer teachers to high school students, teaching about the role of genetics in crop improvement through traditional breeding and GM approaches. Using pre/postassessments, we found that undergraduates' opinions shifted to favor the use of GM organisms (GMOs) in agriculture after SLP participation, rising from 46 to 97%.
View Article and Find Full Text PDFReactive oxygen species (ROS) regulate plant growth and development. ROS are kept at low levels in cells to prevent oxidative damage, allowing them to be effective signaling molecules upon increased synthesis. In plants and animals, NADPH oxidase/respiratory burst oxidase homolog (RBOH) proteins provide localized ROS bursts to regulate growth, developmental processes, and stress responses.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2018
Carbonic anhydrase (CA) was previously proposed as a green alternative for biomineralization of carbon dioxide (CO). However, enzyme's fragile nature when in synthetic environment significantly limits such industrial application. Herein, we hypothesized that CA immobilization onto flexible and hydrated "bridges" that ensure proton-transfer at their interfaces leads to improved activity and kinetic behavior and potentially increases enzyme's feasibility for industrial implementation.
View Article and Find Full Text PDFAbscisic acid (ABA) increases reactive oxygen species (ROS) in guard cells to close Arabidopsis () stomata. In tomato (), we find that ABA-increased ROS is followed by stomatal closure and that both responses are blocked by inhibitors of ROS-producing respiratory burst oxidase enzymes. ABA-induced ROS sensor fluorescence accumulates in the nucleus, chloroplasts, and endomembranes.
View Article and Find Full Text PDF