We demonstrate a laser tunable in intensity with gigahertz tuning speed based on a III/V reflective semiconductor optical amplifier (RSOA) coupled to a silicon photonic chip. The silicon chip contains a Bragg-based Fabry-Perot resonator to form a passive bandpass filter within its stopband to enable single-mode operation of the laser. We observe a side mode suppression ratio of 43 dB, linewidth of 790 kHz, and an optical output power of 1.
View Article and Find Full Text PDFResearch thrusts in silicon photonics are developing control operations using higher order waveguide modes for next generation high-bandwidth communication systems. In this context, devices allowing optical processing of multiple waveguide modes can reduce architecture complexity and enable flexible on-chip networks. We propose and demonstrate a hybrid resonator dually resonant at the 1st and 2nd order modes of a silicon waveguide.
View Article and Find Full Text PDF