Cells that lack attachment to the extracellular matrix (ECM) experience metabolic defects that can lead to caspase-independent cell death. Recently, we discovered that serum and glucocorticoid kinase-1 (SGK1) plays a critical role in the regulation of glucose metabolism, the promotion of energy production, and ultimately the survival of ECM-detached cells. : ECM, extracellular matrix; SGK1, serum and glucocorticoid kinase-1; ROS, reactive oxygen species; CCCP, cyanide m-chlorophenyl hydrazine; PPP, pentose phosphate pathway; G3P, glyceraldhyde-3-phosphate; shRNA, short hairpin RNA; TCA, tricarboxylic acid.
View Article and Find Full Text PDFLoss of integrin-mediated attachment to extracellular matrix (ECM) proteins can trigger a variety of cellular changes that affect cell viability. Foremost among these is the activation of anoikis, caspase-mediated cell death induced by ECM detachment. In addition, loss of ECM attachment causes profound alterations in cellular metabolism, which can lead to anoikis-independent cell death.
View Article and Find Full Text PDFReactive oxygen species (ROS) are well known for their capacity to cause DNA damage, augment mutagenesis, and thereby promote oncogenic transformation. Similarly, agents that reduce ROS levels (antioxidants) are frequently thought to have anti-cancer properties given their propensity to minimize DNA damage and mutagenesis. However, numerous clinical studies focused on antioxidants suggest that this is a facile premise and that antioxidant capacity can be important for cancer cells in a similar fashion to normal cells.
View Article and Find Full Text PDF