Successful cell and gene therapy clinical trials have resulted in the US Food and Drug Administration and European Medicines Agency approving their use for treatment of patients with certain types of cancers and monogenetic diseases. These novel therapies, which rely heavily on lentiviral vectors to deliver therapeutic transgenes to patient cells, have driven additional investigations, increasing demand for both pre-clinical and current Good Manufacturing Practices-grade viral vectors. To better support novel studies by improving current production methods, we report the development of a genetically modified HEK293T-based cell line that is null for expression of both Protein Kinase R and Beta-2 microglobulin and grows in suspension using serum-free media, SJ293TS-DPB.
View Article and Find Full Text PDFBackground: Following our 2015 elucidation of the CASP1/NALP3 inflammasome mechanism of glucocorticoid (GC)-resistance in pediatric acute lymphoblastic leukemia (ALL) patients, we engineered a cell-based CASP1/NALP3 reporter system suitable for high-throughput screening (HTS) of small molecule libraries, with the purpose of identifying compounds capable of inhibiting the CASP1/NALP3 inflammasome and synergizing with GC drugs for the treatment of GC-resistant ALL patients and various autoinflammatory diseases.
Methods: A Dox-controlled system was utilized to induce the expression of the transgene in HEK293 cells while simultaneously overexpressing and . ASC/CASP1/NALP3 inflammasome complex formation was confirmed by co-immunoprecipitation (co-IP) experiments.
Nuclear receptor subfamily 4 group A member 2 (NR4A2) is an orphan nuclear receptor that is over-expressed in cancer and promotes cell proliferation, migration, transformation, and chemoresistance. Increased expression and function of NR4A2 have been attributed to various signaling pathways, but little is known about microRNA (miRNA) regulation of NR4A2 in cancer. To investigate the posttranscriptional regulation of NR4A2, we used a 3' untranslated region (UTR) reporter screen and identified miR-34 as a putative regulator of NR4A2.
View Article and Find Full Text PDFThe nuclear receptor Nur77 is commonly upregulated in adult cancers and has oncogenic functions. Nur77 is an immediate-early response gene that acts as a transcription factor to promote proliferation and protect cells from apoptosis. Conversely, Nur77 can translocate to the mitochondria and induce apoptosis upon treatment with various cytotoxic agents.
View Article and Find Full Text PDFThe human pregnane X receptor (hPXR), a member of the nuclear receptor superfamily, senses xenobiotics and controls the transcription of genes encoding drug-metabolizing enzymes and transporters. The regulation of hPXR's transcriptional activation of its target genes is important for xenobiotic detoxification and endobiotic metabolism, and hPXR dysregulation can cause various adverse drug effects. Studies have implicated the putative phosphorylation site serine 350 (Ser(350)) in regulating hPXR transcriptional activity, but the mechanism of regulation remains elusive.
View Article and Find Full Text PDFNuclear receptor (NR) subfamily 4 group A (NR4A) is a family of three highly homologous orphan nuclear receptors that have multiple physiological and pathological roles, including some in cancer. These NRs are reportedly dysregulated in multiple cancer types, with many studies demonstrating pro-oncogenic roles for NR4A1 (Nur77) and NR4A2 (Nurr1). Additionally, NR4A1 and NR4A3 (Nor-1) are described as tumor suppressors in leukemia.
View Article and Find Full Text PDF