Publications by authors named "Joram Siangla"

Data on pathogen prevalence is crucial for informing exposure and disease risk. We evaluated serological evidence of tick-borne encephalitis (TBE), West Nile (WN), Hepatitis E virus (HEV), Crimean-Congo Hemorrhagic Fever (CCHF), Yersiniosis, Lyme Disease (LD), and brucellosis in 1033 patients presenting with acute febrile illness at 9 health care facilities from diverse ecological zones of Kenya: arid and semiarid (Garissa District Hospital, Lodwar District Hospital, Marigat District Hospital, Gilgil District Hospital), Lake Victoria basin (Kisumu District Hospital, Alupe District Hospital, Kombewa Sub-County Hospital), Kisii highland (Kisii District Hospital), and coastal (Malindi District Hospital). Epidemiological information of the patients such as geography, age, gender, and keeping animals were analyzed as potential risk factors.

View Article and Find Full Text PDF

Background: The existing metrics of malaria transmission are limited in sensitivity under low transmission intensity. Robust surveillance systems are needed as interventions to monitor reduced transmission and prevention of rapid reintroduction. Serological tools based on antibody responses to parasite and vector antigens are potential tools for transmission measurements.

View Article and Find Full Text PDF

Objectives: To determine the malaria prevalence by microscopy, antigen detection and nucleic acid detection in a defined subpopulation in a Plasmodium falciparum-endemic region during the peak transmission season.

Methods: Blood specimens were collected in a cross-sectional study involving children aged 5-10 years (n = 195) presenting with acute fever to two clinics in Western Kenya. All specimens underwent microscopy, HRP2 and aldolase antigen detection by enzyme immunoassay (EIA), parasite-specific DNA and total nucleic acid (RNA and DNA) by real-time PCR (qPCR) and reverse-transcriptase PCR (qRT-PCR).

View Article and Find Full Text PDF

Objective: The antigen, falciparum malaria protein 1 (FMP1), represents the 42-kDa C-terminal fragment of merozoite surface protein-1 (MSP-1) of the 3D7 clone of P. falciparum. Formulated with AS02 (a proprietary Adjuvant System), it constitutes the FMP1/AS02 candidate malaria vaccine.

View Article and Find Full Text PDF

We conducted a phase 1 trial of candidate malaria vaccine RTS,S/AS02A in western Kenya to determine its safety and immunogenicity in healthy adults in an area hyperendemic for malaria. Twenty adults were enrolled and received RTS,S/AS02A (50 microg of RTS,S in 0.5 mL of AS02A) by intramuscular injection on a 0-, 28-, and 178-day schedule.

View Article and Find Full Text PDF

We report the first trial of candidate malaria vaccine antigen FMP1, a 42kDa fragment from the C-terminus of merozoite surface protein-1 (MSP-1) from the 3D7 strain of Plasmodium falciparum, in an endemic area. Forty adult male and female residents of western Kenya were enrolled to receive 3 doses of either FMP1/AS02A or Imovax rabies vaccine by intra-deltoid injection on a 0, 1, 2 month schedule. Thirty-seven volunteers received all three immunizations and 38 completed the 12-month evaluation period.

View Article and Find Full Text PDF