Transcription factor 7-like 2 (TCF7L2) is the main susceptibility gene for type 2 diabetes, primarily through impairing the insulin secretion by pancreatic β cells. However, the exact in vivo mechanisms remain poorly understood. We performed a family study and determined if the T risk allele of the rs7903146 in the TCF7L2 gene increases the risk of type 2 diabetes based on real-time stable isotope measurements of insulin synthesis during an Oral Glucose Tolerance Test.
View Article and Find Full Text PDFAims: In vitro, beta cells immediately secrete stored but readily releasable insulin in response to a rise of glucose. During a prolonged insulin response, this is followed by newly synthesized insulin. Our aim was to develop an in vivo test to determine the ratio between readily available and newly synthesized insulin after a stimulus in humans by labelling newly synthesized insulin.
View Article and Find Full Text PDFThe purpose of this study was to investigate how renal loss of both C-peptide and glucose during oral glucose tolerance test (OGTT) relate to and affect plasma-derived oral minimal model (OMM) indices. All individuals were recruited during family screening between August 2007 and January 2011 and underwent a 3.5-h OGTT, collecting nine plasma samples and urine during OGTT.
View Article and Find Full Text PDFWe performed an extended oral glucose tolerance test (OGTT) to investigate the relationship between early and late beta-cell response and type 2 diabetes (T2D) in families of South Asian origin and indigenous Dutch, burdened by T2D. Based on the OGTT, 22 individuals were normoglycemic, 12 glucose intolerant and 23 had T2D in the South Asian families; these numbers were 34, 12 and 18 in the Caucasian families, respectively. The OGTT had 11 blood samplings in 3.
View Article and Find Full Text PDFBackground: MPO, an enzyme of the innate immune system, exhibits pro-atherogenic effects. These include oxidative damage to LDL- and HDL-cholesterol, and promotion of endothelial dysfunction. Recent studies revealed that MPO independently predicts adverse outcomes in patients with chest pain or suspected acute coronary syndrome.
View Article and Find Full Text PDFBackground: Diabetes mellitus type 2 is linked to augmented endothelial dysfunction and accelerated atherosclerosis. Myeloperoxidase plays an important role in the initiation, progression, and the complications of atherosclerosis. We investigated whether myeloperoxidase levels are increased in diabetic patients.
View Article and Find Full Text PDFIntroduction: Myeloperoxidase (MPO), an antimicrobial enzyme of the innate immune system, has been proposed to exert a wide array of pro-atherogenic effects throughout all stages of the atherosclerotic process. In view of the potent anti-inflammatory effects of statins in vitro, we evaluated the impact of statin therapy on plasma MPO levels in patients with heterozygous familial hypercholesterolemia (FH), treated with either intensive or conventional lipid-lowering therapy. Furthermore, we evaluated the relation between MPO levels and atherosclerosis progression, as determined by intima media thickness (IMT).
View Article and Find Full Text PDFPhytol is a branched-chain fatty alcohol that is a naturally occurring precursor of phytanic acid, a fatty acid involved in the pathogenesis of Refsum disease. The conversion of phytol into phytanic acid is generally believed to take place via three enzymatic steps that involve 1) oxidation to its aldehyde, 2) further oxidation to phytenic acid, and 3) reduction of the double bond at the 2,3 position, yielding phytanic acid. Our recent investigations of this mechanism have elucidated the enzymatic steps leading to phytenic acid production, but the final step of the pathway has not been investigated so far.
View Article and Find Full Text PDFPhytol is a branched chain fatty alcohol, which is abundantly present in nature as part of the chlorophyll molecule. In its free form, phytol is metabolized to phytanic acid, which accumulates in patients suffering from a variety of peroxisomal disorders, including Refsum disease. The breakdown of phytol to phytanic acid takes place in three steps, in which first, the alcohol is converted to the aldehyde, second the aldehyde is converted to phytenic acid, and finally the double bond is reduced to yield phytanic acid.
View Article and Find Full Text PDF