Influenza A virus (IAV) utilizes clathrin-mediated endocytosis for cellular entry. Membrane-bending protein epsin is a cargo-specific adaptor for IAV entry. Epsin interacts with ubiquitinated surface receptors bound to IAVs via its ubiquitin interacting motifs (UIMs).
View Article and Find Full Text PDFMembrane tension plays an inhibitory role in clathrin-mediated endocytosis (CME) by impeding the transition of flat plasma membrane to hemispherical clathrin-coated structures (CCSs). Membrane tension also impedes the transition of hemispherical domes to omega-shaped CCSs. However, CME is not completely halted in cells under high tension conditions.
View Article and Find Full Text PDFEndocytosis is a mechanosensitive process. It involves remodeling of the plasma membrane from a flat shape to a budded morphology, often at the sub-micrometer scale. This remodeling process is energy-intensive and is influenced by mechanical factors such as membrane tension, membrane rigidity, and physical properties of cargo and extracellular surroundings.
View Article and Find Full Text PDFExpansion above a certain threshold in the polyglutamine (polyQ) tract of ataxin-3 is the main cause of neurodegeneration in Machado-Joseph disease. Ataxin-3 contains an N-terminal catalytic domain, called Josephin domain, and a highly aggregation-prone C-terminal domain containing the polyQ tract. Recent work has shown that protein aggregation inhibits clathrin-mediated endocytosis (CME).
View Article and Find Full Text PDFSorting and enumeration of immune cells from blood are critical operations involved in many clinical applications. Conventional methods for sorting and counting immune cells from blood, such as flow cytometry and hemocytometers, are tedious, inaccurate, and difficult for implementation for point-of-care (POC) testing. Herein we developed a microscale centrifugal technology termed Centrifugal Microfluidic Chip (CMC) capable of sorting immune cells from blood and cellular analysis in a laboratory setting.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2016
Results from single cell imaging, facilitated by high resolution microscopy, have demonstrated cell-to-cell variability within the same cell population in contexts ranging from cell growth to cell migration. Recent studies suggest that such variability conveys important information about diseased states. However, manual analysis and interpretation of heterogeneous calcium oscillation based on time-lapsed images, as practiced today, is tedious, and essentially infeasible for large datasets.
View Article and Find Full Text PDF