Organic solar cells based on solution processes have strong advantages over conventional silicon solar cells due to the possible low-cost manufacturing of flexible large-area solar modules at low temperatures. However, the benefit of the low temperature process is diminished by a thermal annealing step at high temperatures (≥200 °C), which cannot be practically applied for typical plastic film substrates with a glass transition temperature lower than 200 °C, for inorganic charge-collecting buffer layers such as zinc oxide (ZnO) in high efficiency inverted-type organic solar cells. Here we demonstrate that novel hybrid electron-collecting buffer layers with a particular nano-crater morphology, which are prepared by a low-temperature (150 °C) thermal annealing process of ZnO precursor films containing poly(2-ethyl-2-oxazoline) (PEOz), can deliver a high efficiency (12.
View Article and Find Full Text PDFInterfacial layers (interlayers) are one of the emerging approaches in organic solar cells with bulk heterojunction (BHJ) layers because the solar cell efficiency can be additionally improved by their presence. However, less attention is paid to the use of interlayers for polymer:nonfullerene solar cells, which have strong advantages over polymer:fullerene solar cells. In addition, most polymers used for the interlayers possess a low glass transition temperature ().
View Article and Find Full Text PDFHere, we report flexible thermal sensors based on organic field-effect transistors (OFETs) that are fabricated using polymeric channel and gate-insulating layers on flexible polymer film substrates. Poly(3-hexylthiophene) and poly(methyl methacrylate) were used as the channel and gate-insulating layers, respectively, whereas indium-tin oxide-coated poly(ethylene naphthalate) films (thickness = 130 μm) were employed as the flexible substrates. Aluminum-coated polymer films were attached on top of the channel parts in the flexible OFETs to block any influence by light illumination.
View Article and Find Full Text PDFUltrasensitive flexible sensors with multi-sensing functions are required for various applications in flexible electronics era. Here we demonstrate flexible polymer-dispersed liquid crystal (PDLC)-integrated-organic field-effect transistors (OFETs) (PDLC-i-OFETs), which sensitively respond to various stimulations including weak gas (air) flow, direct physical touch, light, and heat. The flexible PDLC-i-OFETs were fabricated by spin-coating the poly(methyl methacrylate) (PMMA)-dispersed 4,4'-pentyl-cyanobiphenyl (5CB) layers on the poly(3-hexylthiophene) (P3HT) channel layers of OFETs with 200 μm-thick poly(ethylene naphthalate) (PEN) substrates.
View Article and Find Full Text PDFHere we demonstrate deep red light-sensing all-polymer phototransistors with bulk heterojunction layers of poly[4,8-bis[(2-ethylhexyl)-oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]-thiophenediyl] (PTB7) and poly[[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)] (P(NDI2OD-T2)). The device performances were investigated by varying the incident light intensity of the deep red light (675 nm), while the signal amplification capability was examined by changing the gate and drain voltages. The result showed that the present all-polymer phototransistors exhibited higher photoresponsivity (∼14 A/W) and better on/off photoswitching characteristics than the devices with the pristine polymers under illumination with the deep red light.
View Article and Find Full Text PDFWe report the effect of weak base addition to acidic polymer hole-collecting layers in normal-type polymer:fullerene solar cells. Varying amounts of the weak base aniline (AN) were added to solutions of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The acidity of the aniline-added PEDOT:PSS solutions gradually decreased from pH = 1.
View Article and Find Full Text PDFWe report the composition effect of polymeric sensing channel layers on the performance of all-polymer phototransistors featuring bulk heterojunction (BHJ) structure of electron-donating (p-type) and electron-accepting (n-type) polymers. As an n-type component, poly(3-hexylthiopehe-co-benzothiadiazole) end-capped with 4-hexylthiophene (THBT-4ht) was synthesized via two-step reactions. A well-studied conjugated polymer, poly(3-hexylthiophene) (P3HT), was employed as a p-type polymer.
View Article and Find Full Text PDFAchievement of extremely high stability for inverted-type polymer:fullerene solar cells is reported, which have bulk heterojunction (BHJ) layers consisting of poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-alt-3-fluorothieno[3,4-b]thiophene-2-carboxylate] (PTB7-Th) and [6,6]-phenyl-C71-butyric acid methyl ester (PCBM), by employing UV-cut filter (UCF) that is mounted on the front of glass substrates. The UCF can block most of UV photons below 403 nm at the expense of ≈20% reduction in the total intensity of solar light. Results show that the PTB7-Th:PCBM solar cell with UCF exhibits extremely slow decay in power conversion efficiency (PCE) but a rapidly decayed PCE is measured for the device without UCF.
View Article and Find Full Text PDFOrganic memory devices (OMDs) are becoming more important as a core component in flexible electronics era because of their huge potentials for ultrathin, lightweight and flexible plastic memory modules. In particular, transistor-type OMDs (TOMDs) have been gradually spotlighted due to their structural advantages possessing both memory and driving functions in single devices. Although a variety of TOMDs have been developed by introducing various materials, less attention has been paid to the stable operation at high temperatures.
View Article and Find Full Text PDFOrganic thermoelectric devices (OTEDs) are recognized one of the next generation energy conversion platforms because of their huge potentials for securing electricity continuously from even tiny heat sources in our daily life. The advantage of OTEDs can be attributable to the design freedom in device shapes and the low-cost fabrication by employing solution coating processes at low temperatures. As one of the major OTE materials to date, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has been used, but no study has been yet carried out on its acidity control even though the acidic components in OTEDs can seriously affect the device performance upon operation.
View Article and Find Full Text PDFWe report broadband pH-sensing organic field-effect transistors (OFETs) with the polymer-dispersed liquid crystal (PDLC) sensing layers. The PDLC layers are prepared by spin-coating using ethanol solutions containing 4-cyano-4'-pentyl-biphenyl (5CB) and a diblock copolymer (PAA-b-PCBOA) that consists of LC-philic block [poly(4-cyano-biphenyl-4-oxyundecyl acrylate) (PCBOA)] and acrylic acid block [poly(acrylic acid) (PAA)]. The spin-coated sensing layers feature of 5CB microdomains (<5 μm) encapsulated by the PAA-b-PCBOA polymer chains.
View Article and Find Full Text PDFPolymer solar cells have been spotlighted due to their potential for low-cost manufacturing but their efficiency is still less than required for commercial application as lightweight/flexible modules. Forming a dipole layer at the electron-collecting interface has been suggested as one of the more attractive approaches for efficiency enhancement. However, only a few dipole layer material types have been reported so far, including only one non-ionic (charge neutral) polymer.
View Article and Find Full Text PDFWe report 'broadband light-sensing' all-polymer phototransistors with the nanostructured bulk heterojunction (BHJ) layers of visible (VIS) light-sensing electron-donating (p-type) polymer and near infrared (NIR) light-sensing electron-accepting (n-type) polymer. Poly[{2,5-bis-(2-ethylhexyl)-3,6-bis-(thien-2-yl)-pyrrolo[3,4-c]pyrrole-1,4-diyl}-co-{2,2'-(2,1,3-benzothiadiazole)]-5,5'-diyl}] (PEHTPPD-BT), which is synthesized via Suzuki coupling and employed as the n-type polymer, shows strong optical absorption in the NIR region (up to 1100 nm) in the presence of weak absorption in the VIS range (400~600 nm). To strengthen the VIS absorption, poly(3-hexylthiophene) (P3HT) is introduced as the p-type polymer.
View Article and Find Full Text PDFThe performance of solar cells with a polymer:polymer bulk heterojunction (BHJ) structure, consisting of poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-alt-3-fluorothieno[3,4-b]thiophene-2-carboxylate] (PTB7-Th) donor and poly[[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)] (P(NDI2OD-T2)) acceptor polymers, was investigated as a function of cosolvent (p-xylene:chlorobenzene (pXL:CB)) composition ratio. A remarkable efficiency improvement (∼38%) was achieved by spin-coating the photoactive blend layer from pXL:CB = 80:20 (volume) rather than pXL alone, but the efficiency then decreased when the CB content increased further to pXL:CB = 60:40. The improved efficiency was correlated with a particular PTB7-Th:P(NDI2OD-T2) donor-acceptor blend nanostructure, evidenced by a fiber-like surface morphology, a red-shifted optical absorption, and enhanced PL quenching.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2015
We report planar liquid crystal-gated-organic field-effect transistors (LC-g-OFETs) with a simple in-plane drain-source-gate electrode structure, which can be cost-effectively prepared by typical photolithography/etching processes. The LC-g-OFET devices were fabricated by forming the LC layer (4-cyano-4'-pentylbiphenyl, 5CB) on top of the channel layer (poly(3-hexylthiophene), P3HT) that was spin-coated on the patterned indium-tin oxide (ITO)-coated glass substrates. The LC-g-OFET devices showed p-type transistor characteristics, while a current saturation behavior in the output curves was achieved for the 50-150 nm-thick P3HT (channel) layers.
View Article and Find Full Text PDFHere, the improved performance of organic field effect transistors (OFET) by doping inorganic nanoparticles into a semiconducting polymer as a channel layer is briefly reported. Nickel(II) oxide nanoparticle (NiOnp) was used as an inorganic dopant while regioregular poly(3-hexylthiophene) (P3HT) was used as a matrix polymer for the channel layer in the OFETs. The doping ratio of NiOnp was made 1 wt.
View Article and Find Full Text PDFWe demonstrate liquid crystal-on-organic field-effect transistor (LC-on-OFET) sensory devices that can perceptively sense ultralow level gas flows. The LC-on-OFET devices were fabricated by mounting LC molecules (4-cyano-4'-pentylbiphenyl - 5CB) on the polymer channel layer of OFET. Results showed that the presence of LC molecules on the channel layer resulted in enhanced drain currents due to a strong dipole effect of LC molecules.
View Article and Find Full Text PDFHere we shortly report a protein device platform that is extremely stable in a buffer condition similar to human bodies. The protein device platform was fabricated by covalently attaching cytochrome c (cyt c) protein molecules to organic coupler molecules (pyridine dicarboxylic acid, PDA) that were already covalently bound to an electron-transporting substrate. A cubic nanostructured mesoporous titania film was chosen as an electron-transporting substrate because of its large-sized cubic holes (∼7 nm) and highly crystalline cubic titania walls (∼0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2013
Hybrid phototransistors (HPTRs) were fabricated on glass substrates using organic/inorganic hybrid bulk heterojunction films of p-type poly(3-hexylthiophene) (P3HT) and n-type zinc oxide nanoparticles (ZnO(NP)). The content of ZnO(NP) was varied up to 50 wt % in order to understand the composition effect of ZnO(NP) on the performance of HPTRs. The morphology and nanostructure of the P3HT:ZnO(NP) films was examined by employing high resolution electron microscopes and synchrotron radiation grazing angle X-ray diffraction system.
View Article and Find Full Text PDF