Quantitative Phase Imaging (QPI) has gained popularity in bioimaging because it can avoid the need for cell staining, which in some cases is difficult or impossible. However, as a result, QPI does not provide labelling of various specific intracellular structures. Here we show a novel computational segmentation method based on statistical inference that makes it possible for QPI techniques to identify the cell nucleus.
View Article and Find Full Text PDF: Magnetic resonance imaging (MRI) and the Prostate Imaging-Reporting and Data System (PI-RADS) have become essential tools for prostate cancer evaluation. We evaluated the ability of PI-RADS scores in identifying significant prostate cancer, which would help avoid unnecessary prostate biopsies. : Patients with prostate-specific antigen (PSA) levels ≤ 20 ng/mL, who underwent prostate MRI for evaluation from January 2018 to November 2019, were analyzed.
View Article and Find Full Text PDFA new approach to optical diffraction tomography (ODT) based on intensity measurements is presented. By applying the Wolf transform directly to intensity measurements, we observed unexpected behavior in the 3D reconstruction of the sample. Such a reconstruction does not explicitly represent a quantitative measure of the refractive index of the sample; however, it contains interesting qualitative information.
View Article and Find Full Text PDFNucleation in atomic crystallization remains poorly understood, despite advances in classical nucleation theory. The nucleation process has been described to involve a nonclassical mechanism that includes a spontaneous transition from disordered to crystalline states, but a detailed understanding of dynamics requires further investigation. In situ electron microscopy of heterogeneous nucleation of individual gold nanocrystals with millisecond temporal resolution shows that the early stage of atomic crystallization proceeds through dynamic structural fluctuations between disordered and crystalline states, rather than through a single irreversible transition.
View Article and Find Full Text PDFWe propose an iterative reconstruction scheme for optical diffraction tomography that exploits the split-step non-paraxial (SSNP) method as the forward model in a learning tomography scheme. Compared with the beam propagation method (BPM) previously used in learning tomography (LT-BPM), the improved accuracy of SSNP maximizes the information retrieved from measurements, relying less on prior assumptions about the sample. A rigorous evaluation of learning tomography based on SSNP (LT-SSNP) using both synthetic and experimental measurements confirms its superior performance compared with that of the LT-BPM.
View Article and Find Full Text PDFTaking benefit from recent advances in both phase retrieval and estimation of refractive indices from holographic measurements, we propose a unified framework to reconstruct them from intensity-only measurements. Our method relies on a generic and versatile formulation of the inverse problem and includes sparsity constraints. Its modularity enables the use of a variety of forward models, from simple linear ones to more sophisticated nonlinear ones, as well as various regularizers.
View Article and Find Full Text PDFOptical diffraction tomography (ODT) using Born or Rytov approximation suffers from severe distortions in reconstructed refractive index (RI) tomograms when multiple scattering occurs or the scattering signals are strong. These effects are usually seen as a significant impediment to the application of ODT because multiple scattering is directly linked to an unknown object itself rather than a surrounding medium, and a strong scatter invalidates the underlying assumptions of the Born and Rytov approximations. The focus of this article is to demonstrate for the first time that multiple scattering and high material contrast, if handled aptly, can significantly improve the image quality of the ODT thanks to multiple scattering inside a sample.
View Article and Find Full Text PDFIn optical tomography, there exist certain spatial frequency components that cannot be measured due to the limited projection angles imposed by the numerical aperture of objective lenses. This limitation, often called as the missing cone problem, causes the under-estimation of refractive index (RI) values in tomograms and results in severe elongations of RI distributions along the optical axis. To address this missing cone problem, several iterative reconstruction algorithms have been introduced exploiting prior knowledge such as positivity in RI differences or edges of samples.
View Article and Find Full Text PDFComplete duplication of the bladder and urethra is a very rare congenital anomaly that is usually associated with other congenital anomalies. We report the case of a 7-year-old boy with complete duplication of the bladder and urethra in the anteroposterior plane, without any other associated congenital anomalies.
View Article and Find Full Text PDFPurpose: To test the feasibility of performing transcervical fallopian tube occlusion in a rabbit model with use of unipolar radiofrequency (RF) electrocoagulation.
Materials And Methods: Under fluoroscopic guidance, transvaginal catheterization of the right or left fallopian tube was first performed with use of a coaxial technique in 20 rabbits. With a metal guide wire protruding from the catheter serving as the active electrode, RF electrocoagulation was performed.