The respiratory tract of larger animals is cleared by sweeping bundled strands along the airway surface. These bundled strands can be millimetric in length and consist of MUC5B mucin. They are produced by submucosal glands, and upon emerging from these glands, the long axis of the bundled strands is oriented along the cilia-mediated flow toward the oral cavity.
View Article and Find Full Text PDFAttractive colloids diffuse and aggregate to form gels, solidlike particle networks suspended in a fluid. Gravity is known to strongly impact the stability of gels once they are formed. However, its effect on the process of gel formation has seldom been studied.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2022
Unlabelled: The unique properties of yolk-shell or rattle-type particles make them promising candidates for applications ranging from switchable photonic crystals, to catalysts, to sensors. To realize many of these applications it is important to gain control over the dynamics of the core particle independently of the shell.
Hypothesis: The core particle may be manipulated by an AC electric field with rich frequency-dependent behavior.
Cooperative motion in biological microswimmers is crucial for their survival as it facilitates adhesion to surfaces, formation of hierarchical colonies, efficient motion, and enhanced access to nutrients. Here, we confine synthetic, catalytic microswimmers along one-dimensional paths and demonstrate that they too show a variety of cooperative behaviours. We find that their speed increases with the number of swimmers, and that the activity induces a preferred distance between swimmers.
View Article and Find Full Text PDFOne of the major challenges in modern robotics is controlling micromanipulation by active and adaptive materials. In the respiratory system, such actuation enables pathogen clearance by means of motile cilia. While various types of artificial cilia have been engineered recently, they often involve complex manufacturing protocols and focus on transporting liquids only.
View Article and Find Full Text PDFYolk-shell or rattle-type particles consist of a core particle that is free to move inside a thin shell. A stable core with a fully accessible surface is of interest in fields such as catalysis and sensing. However, the stability of a charged nanoparticle core within the cavity of a charged thin shell remains largely unexplored.
View Article and Find Full Text PDFEur Phys J E Soft Matter
March 2021
Control over micromotors' motion is of high relevance for lab-on-a-chip and biomedical engineering, wherein such particles encounter complex microenvironments. Here, we introduce an efficient way to influence Janus micromotors' direction of motion and speed by modifying their surface properties and those of their immediate surroundings. We fabricated light-responsive Janus micromotors with positive and negative surface charge, both driven by ionic self-diffusiophoresis.
View Article and Find Full Text PDFMost biological fluids are viscoelastic, meaning that they have elastic properties in addition to the dissipative properties found in Newtonian fluids. Computational models can help us understand viscoelastic flow, but are often limited in how they deal with complex flow geometries and suspended particles. Here, we present a lattice Boltzmann solver for Oldroyd-B fluids that can handle arbitrarily shaped fixed and moving boundary conditions, which makes it ideally suited for the simulation of confined colloidal suspensions.
View Article and Find Full Text PDFGeometric confinement strongly influences the behavior of microparticles in liquid environments. However, to date, nonspherical particle behaviors close to confining boundaries, even as simple as planar walls, remain largely unexplored. Here, we measure the height distribution and orientation of colloidal dumbbells above walls by means of digital in-line holographic microscopy.
View Article and Find Full Text PDFRecent experiments show a strong rotational diffusion enhancement for self-propelled microrheological probes in colloidal glasses. Here, we provide microscopic understanding using simulations with a frictional probe-medium coupling that converts active translation into rotation. Diffusive enhancement emerges from the medium's disordered structure and peaks at a second-order transition in the number of contacts.
View Article and Find Full Text PDFMicroswimmers typically move near walls, which can strongly influence their motion. However, direct experimental measurements of swimmer-wall separation remain elusive to date. Here, we determine this separation for model catalytic microswimmers from the height dependence of the passive component of their mean-squared displacement.
View Article and Find Full Text PDFPrecise control over the motion of magnetically responsive particles in fluidic chambers is important for probing and manipulating tasks in prospective microrobotic and bio-analytical platforms. We have previously exploited such colloids as shuttles for the microscale manipulation of objects. Here, we study the rolling motion of magnetically driven Janus colloids on solid substrates under the influence of an orthogonal external electric field.
View Article and Find Full Text PDFUnrestricted particle transport through microfluidic channels is of paramount importance to a wide range of applications, including lab-on-a-chip devices. In this article, we study via video microscopy the electro-osmotic aggregation of colloidal particles at the opening of a micrometer-sized silica channel in the presence of a salt gradient. Particle aggregation eventually leads to clogging of the channel, which may be undone by a time-adjusted reversal of the applied electric potential.
View Article and Find Full Text PDFCatalytic colloidal swimmers that propel due to self-generated fluid flows exhibit strong affinity for surfaces. Here, we report experimental measurements of a significant dependence of such microswimmers' speed on the nearby substrate material. We find that speeds scale with the solution contact angle θ on the substrate, which relates to the associated hydrodynamic substrate slip length, as V∝(cosθ+1)^{-3/2}.
View Article and Find Full Text PDFBackground: Groin pain is a common problem in athletes which results in loss of playing time. Moreover, it can be for the cause of athletic career termination. A common cause of groin pain in athletes is inguinal disruption; pain in the groin area near the pubic tubercle were no obvious other pathology exists to explain the symptoms.
View Article and Find Full Text PDFA locally heated Janus colloid can achieve motion in an electrolyte by an effect known as self-thermo(di)electrophoresis. We numerically study the self-propulsion of such a "hot swimmer" in a monovalent electrolyte using the finite-element method and analytic theory. The effect of electrostatic screening for intermediate and large Debye lengths is charted and we report on the fluid flow generated by self-thermoelectrophoresis.
View Article and Find Full Text PDFSelf-propelled particles have been experimentally shown to orbit spherical obstacles and move along surfaces. Here, we theoretically and numerically investigate this behavior for a hydrodynamic squirmer interacting with spherical objects and flat walls using three different methods of approximately solving the Stokes equations: The method of reflections, which is accurate in the far field; lubrication theory, which describes the close-to-contact behavior; and a lattice Boltzmann solver that accurately accounts for near-field flows. The method of reflections predicts three distinct behaviors: orbiting/sliding, scattering, and hovering, with orbiting being favored for lower curvature as in the literature.
View Article and Find Full Text PDFThe squirmer is a simple yet instructive model for microswimmers, which employs an effective slip velocity on the surface of a spherical swimmer to describe its self-propulsion. We solve the hydrodynamic flow problem with the lattice Boltzmann (LB) method, which is well-suited for time-dependent problems involving complex boundary conditions. Incorporating the squirmer into LB is relatively straightforward, but requires an unexpectedly fine grid resolution to capture the physical flow fields and behaviors accurately.
View Article and Find Full Text PDFColloidal particles with strong, short-ranged attractions can form a gel. We simulate this process without and with hydrodynamic interactions (HI), using the lattice-Boltzmann method to account for presence of a thermalized solvent. We show that HI speed up and slow down gelation at low and high volume fractions, respectively.
View Article and Find Full Text PDFColloidal nanocrystals can self-assemble into highly ordered superlattices. Recent studies have focused on changing their morphology by tuning the nanocrystal interactions via ligand-based surface modification for simple particle shapes. Here we demonstrate that this principle is transferable to and even enriched in the case of a class of branched nanocrystals made of a CdSe core and eight CdS pods, so-called octapods.
View Article and Find Full Text PDFThe motion of ionic solutes and charged particles under the influence of an electric field and the ensuing hydrodynamic flow of the underlying solvent is ubiquitous in aqueous colloidal suspensions. The physics of such systems is described by a coupled set of differential equations, along with boundary conditions, collectively referred to as the electrokinetic equations. Capuani et al.
View Article and Find Full Text PDFHydrodynamic interactions in systems composed of self-propelled particles, such as swimming microorganisms and passive tracers, have a significant impact on the tracer dynamics compared to the equivalent "dry" sample. However, such interactions are often difficult to take into account in simulations due to their computational cost. Here, we perform a systematic investigation of swimmer-tracer interaction using an efficient force-counterforce-based lattice-Boltzmann (LB) algorithm [De Graaf et al.
View Article and Find Full Text PDFAn ion-exchange-resin-based microfluidic pump is introduced that utilizes trace amounts of ions to generate fluid flows. We show experimentally that our pump operates in almost deionized water for periods exceeding 24 h and induces fluid flows of μm s over hundreds of μm. This flow displays a far-field, power-law decay which is characteristic of two-dimensional (2D) flow when the system is strongly confined and of three-dimensional (3D) flow when it is not.
View Article and Find Full Text PDFPolar solvents like water support the bulk dissociation of themselves and their solutes into ions, and the re-association of these ions into neutral molecules in a dynamic equilibrium, e.g., HO ⇌ H + HO.
View Article and Find Full Text PDF