The limited protective immunity induced by acellular pertussis vaccines demands development of novel vaccines that induce broader and longer-lived immunity. In this study, we investigated the protective capacity of outer membrane vesicle pertussis vaccines (omvPV) with different antigenic composition in mice to gain insight into which antigens contribute to protection. We showed that total depletion of virulence factors ((-) mode) in omvPV led to diminished protection despite the presence of high antibody levels.
View Article and Find Full Text PDFOuter membrane vesicles (OMVs) produced by bacteria are interesting vaccine candidates. OMVs are nanoparticles that contain many immunogenic components, are self-adjuvating, and non-replicative. Despite recent insights in the biogenesis of OMVs, there is no consensus on a conserved mechanism of OMV release and the OMV yield from bacterial cultures remains low.
View Article and Find Full Text PDFPhysicochemical and immunochemical assays were applied to substantiate the relation between upstream processing and the quality of whole-cell pertussis vaccines. Bordetella pertussis bacteria were cultured on a chemically defined medium using a continuous cultivation process in stirred tank reactors to obtain uniform protein expression. Continuous culture favors the consistent production of proteins known as virulence factors.
View Article and Find Full Text PDFThe current resurgence of whooping cough is alarming, and improved pertussis vaccines are thought to offer a solution. Outer membrane vesicle vaccines (omvPV) are potential vaccine candidates, but omvPV-induced humoral responses have not yet been characterized in detail. The purpose of this study was to determine the antigen composition of omvPV and to elucidate the immunogenicity of the individual antigens.
View Article and Find Full Text PDFβ-Propiolactone is often applied for inactivation of viruses and preparation of viral vaccines. However, the exact nature of the reactions of β-propiolactone with viral components is largely unknown. The purpose of the current study was to elucidate the chemical modifications occurring on nucleotides and amino acid residues caused by β-propiolactone.
View Article and Find Full Text PDF