Objective: Elevated entorhinal cortex (EC) tau in low beta-amyloid individuals can predict accumulation of pathology and cognitive decline. We compared the accuracy of magnetic resonance imaging (MRI)-derived locus coeruleus integrity, neocortical beta-amyloid burden by positron emission tomography (PET), and hippocampal volume in identifying elevated entorhinal tau signal in asymptomatic individuals who are considered beta-amyloid PET-negative.
Methods: We included 188 asymptomatic individuals (70.
Background: Autopsy work indicates that the widely-projecting noradrenergic pontine locus coeruleus (LC) is among the earliest regions to accumulate hyperphosphorylated tau, a neuropathological Alzheimer's disease (AD) hallmark. This early tau deposition is accompanied by a reduced density of LC projections and a reduction of norepinephrine's neuroprotective effects, potentially compromising the neuronal integrity of LC's cortical targets. Previous studies suggest that lower magnetic resonance imaging (MRI)-derived LC integrity may signal cortical tissue degeneration in cognitively healthy, older individuals.
View Article and Find Full Text PDFAutopsy data indicate that the locus coeruleus (LC) is one of the first sites in the brain to accumulate hyperphosphorylated tau pathology, with the rostral part possibly being more vulnerable in the earlier stages of the disease. Taking advantage of recent developments in ultra-high field (7 T) imaging, we investigated whether imaging measures of the LC also reveal a specific anatomic correlation with tau using novel plasma biomarkers of different species of hyperphosphorylated tau, how early in adulthood these associations can be detected and if are associated with worse cognitive performance. To validate the anatomic correlations, we tested if a rostro-caudal gradient in tau pathology is also detected at autopsy in data from the Rush Memory and Aging Project (MAP).
View Article and Find Full Text PDFPrimary prevention trials have shifted their focus to the earliest stages of Alzheimer's disease (AD). Autopsy data indicates that the neuromodulatory subcortical systems' (NSS) nuclei are specifically vulnerable to initial tau pathology, indicating that these nuclei hold great promise for early detection of AD in the context of the aging brain. The increasing availability of new imaging methods, ultra-high field scanners, new radioligands, and routine deep brain stimulation implants has led to a growing number of NSS neuroimaging studies on aging and neurodegeneration.
View Article and Find Full Text PDFThe brain-derived neurotropic growth factor (BDNF) gene has been linked to dementia, inflammation, and Apolipoprotein E (APOE) ɛ4 status. We used cerebrospinal fluid (CSF) amyloid-β (Aβ)42 and phosphorylated tau (p-tau) to investigate associations with BDNF polymorphisms and modifications by APOE ɛ4 or inflammation in a memory clinic population (n = 114; subjective cognitive decline, mild cognitive impairment, Alzheimer's disease). We found distinct pathways to Alzheimer's disease pathology: Val-Met displayed lower CSF-Aβ42 in APOE ɛ4+ carriers, independent of p-tau, while Val-Val displayed greater p-tau at higher IL-6 and sub-threshold Aβ42.
View Article and Find Full Text PDFWhite matter signal abnormalities (WMSA), either hypo- or hyperintensities in MRI imaging, are considered a proxy of cerebrovascular pathology and contribute to, and modulate, the clinical presentation of Alzheimer's disease (AD), with cognitive dysfunction being apparent at lower levels of amyloid and/or tau pathology when lesions are present. To what extent the topography of cortical thinning associated with AD may be explained by WMSA remains unclear. Cortical thickness group difference maps and subgroup analyses show that the effect of WMSA on cortical thickness in cognitively normal participants has a higher overlap with the canonical pattern of AD, compared to AD participants.
View Article and Find Full Text PDFThe recently described biological framework of Alzheimer's disease (AD) emphasizes three types of pathology to characterize this disorder, referred to as the 'amyloid/tau/neurodegeneration' (A-T-N) status. The 'neurodegenerative' component is typically defined by atrophy measures derived from structural magnetic resonance imaging (MRI) such as hippocampal volume. Neurodegeneration measures from imaging are associated with disease symptoms and prognosis.
View Article and Find Full Text PDFThe noradrenergic (NE) locus coeruleus (LC) is vulnerable to hyperphosphorylated tau, and dysregulated NE-metabolism is linked to greater tau and disease progression. We investigated whether elevated NE-metabolism alone predicts memory decline or whether concomitant presence of tau and amyloid-β is required. Among 114 memory clinic participants, time trends (max.
View Article and Find Full Text PDFBackground And Purpose: Cerebral white matter signal abnormalities (WMSAs) are a significant radiological marker associated with brain and vascular aging. However, understanding their clinical impact is limited because of their pathobiological heterogeneity. We determined whether use of robust reliable automated procedures can distinguish WMSA classes with different clinical consequences.
View Article and Find Full Text PDFPattern separation (PS) describes the process by which the brain discriminates similar stimuli from previously encoded stimuli. This fundamental process requires the intact processing by specific subfields in the hippocampus and can be examined using mnemonic discrimination tasks. Previous studies reported different patterns for younger and older individuals between mnemonic discrimination performance and hippocampal subfield activation.
View Article and Find Full Text PDFThe APOE-ε4 genotype is a risk factor for late-onset Alzheimer's disease (AD) as well as vascular pathology. Given the increased risk of blood-brain barrier (BBB) dysfunction and inflammation among APOE-ε4 carriers, we aimed to examine whether BBB dysfunction and inflammation contribute to the relationship between APOE and AD key pathologies, as measured in the cerebrospinal fluid (CSF). We applied bootstrapped regression and path analyses involving Q-albumin CSF/plasma ratio (a BBB/blood-CSF barrier function marker), interleukins (IL-1β, IL-6, and IL-12p70; inflammation markers), and CSF p-Tau and amyloid-β (AD pathology markers) of 97 participants (aged 38-83 years) from a university memory clinic.
View Article and Find Full Text PDFThe locus coeruleus (LC) supplies norepinephrine to the brain, is one of the first sites of tau deposition in Alzheimer's disease (AD) and modulates a variety of behaviors and cognitive functions. Transgenic mouse models showed that norepinephrine dysregulation after LC lesions exacerbates inflammatory responses, blood-brain barrier leakage (BBB), and cognitive deficits. Here, we investigated relationships between central norepinephrine metabolism, tau and beta-amyloid (Aβ), inflammation, BBB-dysfunction, neuropsychiatric problems, and memory in-vivo in a memory clinic population (total n = 111, 60 subjective cognitive decline, 36 mild cognitively impaired, and 19 AD dementia).
View Article and Find Full Text PDFMeasures of amyloid-β (Aβ) and phosphorylated tau (p-tau) concentrations in cerebrospinal fluid are extensively used for diagnostic and research purposes in Alzheimer's disease (AD) as correlates of cortical thinning and cognitive outcomes. The present study investigated the relationship of Aβ and p-tau with hippocampal subfield volumes Cornu Ammonis (CA) 1-4, dentate gyrus (DG), and subiculum. Subfields were segmented from T1-weighted images from the ADNI-population using FreeSurfer v6.
View Article and Find Full Text PDFBackground: Amyloid-beta (Aβ) has a dose-response relationship with cognition in healthy adults. Additionally, the levels of functional connectivity within and between brain networks have been associated with cognitive performance in healthy adults. Aiming to explore potential synergistic effects, we investigated the relationship of inter-network functional connectivity, Aβ burden, and memory decline among healthy individuals and individuals with preclinical, prodromal, or clinical Alzheimer's disease.
View Article and Find Full Text PDFThe underlying pathology of white matter signal abnormalities (WMSAs) is heterogeneous and may vary dependent on the magnetic resonance imaging contrast used to define them. We investigated differences in white matter diffusivity as an indicator for white matter integrity underlying WMSA based on T1-weighted and fluid-attenuated inversion recovery (FLAIR) imaging contrast. In addition, we investigated which white matter region of interest (ROI) could predict clinical diagnosis best using diffusion metrics.
View Article and Find Full Text PDFDirect vagus nerve stimulation (dVNS) is known to improve mood, epilepsy, and memory. Memory improvements have been observed in Alzheimer's disease patients after long-term stimulation. The potential of transcutaneous vagus nerve stimulation (tVNS), a noninvasive alternative to dVNS, to alter memory performance remains unknown.
View Article and Find Full Text PDFThis article provides an overview of the methods used for optical surface imaging during the last 30 years, with the primary focus on the imaging of the unsedated child. The goal is to provide the reader with an overview of the working methods behind the published articles. This will enable the reader to better interpret current data and decide if a certain approach is suitable for their particular research question.
View Article and Find Full Text PDF