Optical tweezers are widely used to investigate biomolecules and biomolecular interactions. In these investigations, the biomolecules of interest are typically coupled to microscopic beads that can be optically trapped. Since high-intensity laser beams are required to trap such microscopic beads, laser-induced heating due to optical absorption is typically unavoidable.
View Article and Find Full Text PDFOptical tweezers and fluorescence microscopy are powerful methods for investigating the mechanical and structural properties of biomolecules and for studying the dynamics of the biomolecular processes that these molecules are involved in. Here we provide an outline of the concurrent use of optical tweezers and fluorescence microscopy for analyzing biomolecular processes. In particular, we focus on the use of super-resolution microscopy in optical tweezers, which allows visualization of molecules at the higher molecular densities that are typically encountered in living systems.
View Article and Find Full Text PDF