Dermatan sulfate (DS), also known as chondroitin sulfate (CS)-B, is a member of the linear polysaccharides called glycosaminoglycans (GAGs). The expression of CS/DS and DS proteoglycans is increased in several fibrotic renal diseases, including interstitial fibrosis, diabetic nephropathy, mesangial sclerosis and nephrosclerosis. Little, however, is known about structural alterations in DS in renal diseases.
View Article and Find Full Text PDFHeparan sulfate (HS) within the glomerular basement membrane (GBM) is thought to play a major role in the charge-selective properties of the glomerular capillary wall. Recent data, however, raise questions regarding the direct role of HS in glomerular filtration. For example, in situ studies suggest that HS may prevent plasma macromolecules from clogging the GBM, keeping it in an "open" state.
View Article and Find Full Text PDFHeparinoids are used in the clinic as anticoagulants. A specific pentasaccharide in heparinoids activates antithrombin III, resulting in inactivation of factor Xa and-when additional saccharides are present-inactivation of factor IIa. Structural and functional analysis of the heterogeneous heparinoids generally requires advanced equipment, is time consuming, and needs (extensive) sample preparation.
View Article and Find Full Text PDFHeparan sulfate (HS) is a member of the family of glycosaminoglycans (GAGs) that is generally bound to a core protein to form a proteoglycan (PG). HSPGs may be cell-membrane associated (glypicans and syndecans) or located within the extracellular matrix (agrin, perlecan and type XVIII collagen). The sulfate and carboxylic groups in HS are responsible for the negative charge of the sugar chain.
View Article and Find Full Text PDFBackground: Recently, we identified specific N- and 6-O-sulphated heparan sulphate (HS) domains on activated glomerular endothelial cells. In this study, we evaluated in lupus nephritis the expression of different HS domains on glomerular endothelium and in the glomerular basement membrane (GBM).
Methods: The expression of specific glomerular HS domains and the presence of immunoglobulins (Ig) were determined by immunofluorescence staining of kidney sections of patients with nephritis due to systemic lupus erythematosus (SLE) and MRL/lpr lupus mice.
Background: Minimal change nephrotic syndrome (MCNS) is the most frequent form of nephrotic syndrome in childhood. In the glomerular basement membrane (GBM) of adult patients with MCNS, a reduced expression of a specific heparan sulphate (HS) domain has been reported. In children with MCNS, urinary activity of the HS-degrading enzyme heparanase was increased.
View Article and Find Full Text PDFBackground: Proliferative glomerulonephritides are characterized by the influx of leucocytes. Heparan sulfate (HS) plays an important role in the recruitment, rolling and firm adhesion of leucocytes to activated endothelium. Recently, we have shown the importance of HS on activated mouse glomerular endothelial cells (mGEnC-1) for the firm adhesion of leucocytes in a static adhesion assay.
View Article and Find Full Text PDFHeparan sulfates (HS) are long, unbranched, negatively charged polysaccharides that are bound to core proteins. HS in the glomerular basement membrane (GBM) is reported to be important for charge-selective permeability. Aberrant GBM HS expression has been observed in several glomerular diseases, such as diabetic nephropathy and membranous glomerulopathy, and a decrease in HS generally is associated with proteinuria.
View Article and Find Full Text PDFGlycosaminoglycans (GAGs) are long unbranched polysaccharides, most of which are linked to a core protein to form proteoglycans. Depending on the nature of their backbone, one can discern galactosaminoglycans (chondroitin sulfate [CS] and dermatan sulfate [DS]) and glucosaminoglycans (heparan sulfate [HS], heparin, hyaluronic acid, and keratan sulfate). Modification of the backbone by sulfation, deacetylation, and epimerization results in unique sequences within GAG molecules, which are instrumental in the binding of a large number of proteins.
View Article and Find Full Text PDFBackground: Diabetic nephropathy poses an increasing health problem in the Western world, and research to new leads for diagnosis and therapy therefore is warranted. In this respect, heparan sulfates (HSs) offer new possibilities because crude mixtures of these polysaccharides are capable of ameliorating proteinuria. The aim of this study is to immuno(histo)chemically profile HSs from microalbuminuric kidneys from patients with type 1 diabetes and identify specific structural HS alterations associated with early diabetic nephropathy.
View Article and Find Full Text PDFGlycosaminoglycans (GAG) play an important role in renal homeostasis. They are strongly negatively charged polysaccharides that bind and modulate a myriad of proteins, including growth factors, cytokines, and enzymes. With the aid of specific phage display-derived antibodies, the distribution of heparan sulfate (HS) and chondroitin sulfate (CS) domains in the normal human kidney was studied.
View Article and Find Full Text PDFBackground: The culture and establishment of glomerular cell lines has proven to be an important tool for the understanding of glomerular cell functions in glomerular physiology and pathology. Especially, the recent establishment of a conditionally immortalized visceral epithelial cell line has greatly boosted the research on podocyte biology.
Methods: Glomeruli were isolated from H-2Kb-tsA58 transgenic mice that contain a gene encoding a temperature-sensitive variant of the SV40 large tumor antigen, facilitating proliferative growth at 33 degrees C and differentiation at 37 degrees C.
Heparan sulfate proteoglycans (HSPGs) are glycoproteins consisting of a core protein to which linear heparan sulfate side chains are covalently attached. These heparan sulfate side chains can be modified at different positions by several enzymes, which include N-deacetylases, N- and O-sulfotransferases, and an epimerase. These heparan sulfate modifications give rise to an enormous structural diversity, which corresponds to the variety of biologic functions mediated by heparan sulfate, including its role in inflammation.
View Article and Find Full Text PDF