Publications by authors named "Joost Bruggeman"

The effectiveness of rheological blends of high molecular weight hyaluronic acid (HA) and low molecular weight hydroxypropyl methylcellulose (HPMC) in the prevention of peritoneal adhesions post-surgery is demonstrated. The physical mixture of the two carbohydrates increased the dwell time in the peritoneum while significantly improving the injectability of the polymer compared with HA alone. HA-HPMC treatment decreased the total adhesion area by ∼ 70% relative to a saline control or no treatment in a repeated cecal injury model in the rabbit.

View Article and Find Full Text PDF

Biodegradable elastomers based on polycondensation reactions of xylitol with sebacic acid, referred to as poly(xylitol sebacate) (PXS) elastomers have recently been developed. We describe the in vivo behavior of PXS elastomers. Four PXS elastomers were synthesized, characterized, and compared with poly(L-lactic-co-glycolic acid) (PLGA).

View Article and Find Full Text PDF

The advancement of tissue engineering is contingent upon the development and implementation of advanced biomaterials. Conductive polymers have demonstrated potential for use as a medium for electrical stimulation, which has shown to be beneficial in many regenerative medicine strategies including neural and cardiac tissue engineering. Melanins are naturally occurring pigments that have previously been shown to exhibit unique electrical properties.

View Article and Find Full Text PDF

Biomaterials with a wide range of tunable properties are desirable for application-specific purposes. We have previously developed a class of elastomeric poly(ester amides) based on the amine alcohol 1,3-diamino-2-hydroxypropane termed poly(1,3-diamino-2-hydroxypropane-co-polyol sebacate) or APS. In this work, we have synthesized and characterized formulations of APS polymers and studied the degradation of these polymers in vitro and in vivo.

View Article and Find Full Text PDF

We have developed a family of synthetic biodegradable polymers that are composed of structural units endogenous to the human metabolism, designated poly(polyol sebacate) (PPS) polymers. Material properties of PPS polymers can be tuned by altering the polyol monomer and reacting stiochiometric ratio of sebacic acid. These thermoset networks exhibited tensile Young's moduli ranging from 0.

View Article and Find Full Text PDF

Currently available synthetic biodegradable elastomers are primarily composed of crosslinked aliphatic polyesters, which suffer from deficiencies including (1) high crosslink densities, which results in exceedingly high stiffness, (2) rapid degradation upon implantation, or (3) limited chemical moieties for chemical modification. Herein, we have developed poly(1,3-diamino-2-hydroxypropane-co-polyol sebacate)s, a new class of synthetic, biodegradable elastomeric poly(ester amide)s composed of crosslinked networks based on an amino alcohol. These crosslinked networks feature tensile Young's modulus on the order of 1MPa and reversable elongations up to 92%.

View Article and Find Full Text PDF

Elastomeric networks are increasingly being investigated for a variety of biomedical applications including drug delivery and tissue engineering. However, in some cases, their preparation requires the use of harsh processing conditions (e.g.

View Article and Find Full Text PDF

Encapsulating cells within a polymer matrix creates a three-dimensional (3D) scaffold that may more accurately represent the native microenvironment and cell organization. Here we report a porous scaffold prepared from a photocurable elastomer, poly(glycerolco-sebacate)-acrylate (PGSA). The scaffold porosity, swelling, mass loss, toxicity and mechanical properties, suggest that porous PGSA could be used to support the growth and differentiation of encapsulated cells.

View Article and Find Full Text PDF

The free Src homology 2 (SH2) domain protein SAP, encoded by the X-linked lymphoproliferative disease gene SH2D1A, controls signal transduction initiated by engagement of the SLAM-related receptors in T and NK cells. Here we demonstrate that SAP is required for phosphorylation of both SLAM and Ly9 in thymocytes and peripheral T cells. Furthermore, in vitro protein interaction studies and yeast two-hybrid analyses indicated that SAP binds directly to FynT and Lck.

View Article and Find Full Text PDF

The importance of CD45RB expression on T cells was already shown in mice where CD45RB(high) expression determines pathogenic potential. In this study, we analyzed the expression of CD45RA, CD45RB, and CD45RO on CD4(+) T lymphocytes in the intestinal mucosa and in the circulation of patients with inflammatory bowel disease (IBD). In addition, we studied the cytokine profile of these cells.

View Article and Find Full Text PDF

CD150 (signaling lymphocyte activation molecule [SLAM]) is a self-ligand cell surface glycoprotein expressed on T cells, B cells, macrophages, and dendritic cells. To further explore the role of CD150 signaling in costimulation and T(H)1 priming we have generated a panel of rat antimouse CD150 monoclonal antibodies. CD150 cell surface expression is up-regulated with rapid kinetics in activated T cells and lipopolysaccharide/interferon gamma (IFN-gamma)-activated macrophages.

View Article and Find Full Text PDF