The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI).
View Article and Find Full Text PDFWe believe that correcting for leaching in (terrestrial) litterbags studies such as the Tea Bag Index will result in more uncertainties than it resolves. This is mainly because leaching occurs in pulses upon changes in the environment and because leached material can still be mineralized after leaching. Furthermore, amount of material that potentially leaches from tea is comparable to other litter types.
View Article and Find Full Text PDFDeadwood is a large global carbon store with its store size partially determined by biotic decay. Microbial wood decay rates are known to respond to changing temperature and precipitation. Termites are also important decomposers in the tropics but are less well studied.
View Article and Find Full Text PDFand are globally occurring mangrove genera with different traits that place them in different parts of the intertidal zone. It is generally accepted that the oxidizing capacity of roots is larger than that of roots, which initiates more reduced conditions in the soil below the latter genus. We hypothesize that the more reduced conditions beneath stands lead to more active sulfate-reducing microbial communities compared to stands.
View Article and Find Full Text PDFAfter oxygen, sulfate is the most important oxidant for the oxidation of organic matter in mangrove forest soils. As sulfate reducers are poor competitors for common electron donors, their relative success depends mostly on the surplus of carbon that is left by aerobic organisms due to oxygen depletion. We therefore hypothesized that sulfate-cycling in mangrove soils is influenced by the size of net primary production, and hence negatively affected by mangrove degradation and exploitation, as well as by carbon-exporting waves.
View Article and Find Full Text PDFNitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil.
View Article and Find Full Text PDFNutrient enrichment of mangroves, a common phenomenon along densely populated coastlines, may negatively affect mangrove ecosystems by modifying internal carbon and nutrient cycling. The decomposition of litter exerts a strong influence on these processes and is potentially modified by eutrophication. This study describes effects of N and P enrichment on litter decomposition rate and mineralisation/immobilisation patterns.
View Article and Find Full Text PDF