Publications by authors named "Joosen R"

Background: Pulmonary artery (PA) stenosis is common after arterial switch operation (ASO) for transposition of the great arteries (TGA). Differences between balloon angioplasty (BA) and stents on right ventricular (RV) and PA pressures are not well studied.

Objectives: The purpose of this study was to analyze percutaneous PA interventions' frequency after ASO, complications, and the effects of BA and stents on RV and PA pressures.

View Article and Find Full Text PDF

Background: Branch pulmonary artery (PA) stenosis is one of the most common indications for percutaneous interventions in patients with transposition of the great arteries (TGA), tetralogy of Fallot (ToF), and truncus arteriosus (TA). However, the effects of percutaneous branch PA interventions on exercise capacity remains largely unknown. In addition, there is no consensus about the optimal timing of the intervention for asymptomatic patients according to international guidelines.

View Article and Find Full Text PDF

Multi-parent populations (MPPs) are attractive for genetic and breeding studies because they combine genetic diversity with an easy-to-control population structure. Most methods for mapping QTLs in MPPs focus on the detection of QTLs in single environments. Little attention has been given to mapping QTLs in multienvironment trials (METs) and to detecting and modeling QTL-by-environment interactions (QEIs).

View Article and Find Full Text PDF
Article Synopsis
  • The study assessed the long-term clinical outcomes of patients who underwent an arterial switch operation (ASO) for transposition of the great arteries (TGA), highlighting a growing patient population.
  • Findings indicated that at age 35, the survival rate was high at 93%, but a significant percentage (36%) required re-interventions, particularly affecting the right ventricular outflow tract.
  • The research concluded that while survival rates are favorable, continuous monitoring and potential interventions are necessary throughout the patients' lives, with specific subtypes of TGA presenting higher risks for complications.
View Article and Find Full Text PDF

Background: Unilateral pulmonary artery (PA) stenosis is common in the transposition of the great arteries (TGA) after arterial switch operation (ASO) but the effects on the right ventricle (RV) remain unclear.

Aims: To assess the effects of unilateral PA stenosis on RV afterload and function in pediatric patients with TGA-ASO.

Methods: In this retrospective study, eight TGA patients with unilateral PA stenosis underwent heart catheterization and cardiac magnetic resonance (CMR) imaging.

View Article and Find Full Text PDF

Background: Branch pulmonary artery stenosis is common after surgical repair in patients with biventricular CHD and often requires reinterventions. However, (long-term) effects of percutaneous branch pulmonary artery interventions on exercise capacity, right ventricular function, and lung perfusion remain unclear. This review describes the (long-term) effects of percutaneous branch pulmonary artery interventions on exercise capacity, right ventricular function, and lung perfusion following PRISMA guidelines.

View Article and Find Full Text PDF

Background: In repaired tetralogy of Fallot (ToF) patients with residual right ventricular (RV) outflow tract obstructions (RVOTO), risk stratification and timing of re-interventions are based on RVOTO gradients. However, this might be insufficient to prevent RV dysfunction. Instead, assessment of RV to pulmonary arterial (RV-PA) coupling allows integrated assessment of RV function in relationship to its afterload and could be of additional value in clinical decision-making.

View Article and Find Full Text PDF

Motivation: Multi-parent populations (MPPs) are popular for QTL mapping because they combine wide genetic diversity in parents with easy control of population structure, but a limited number of software tools for QTL mapping are specifically developed for general MPP designs.

Results: We developed an R package called statgenMPP, adopting a unified identity-by-descent (IBD)-based mixed model approach for QTL analysis in MPPs. The package offers easy-to-use functionalities of IBD calculations, mixed model solutions and visualizations for QTL mapping in a wide range of MPP designs, including diallele, nested-association mapping populations, multi-parent advanced genetic inter-cross populations and other complicated MPPs with known crossing schemes.

View Article and Find Full Text PDF

The identity-by-descent (IBD)-based mixed model approach introduced in this study can detect quantitative trait loci (QTLs) referring to the parental origin and simultaneously account for multilevel relatedness of individuals within and across families. This unified approach is proved to be a powerful approach for all kinds of multiparental population (MPP) designs. Multiparental populations (MPPs) have become popular for quantitative trait loci (QTL) detection.

View Article and Find Full Text PDF

Seed germination is characterized by a constant change of gene expression across different time points. These changes are related to specific processes, which eventually determine the onset of seed germination. To get a better understanding on the regulation of gene expression during seed germination, we performed a quantitative trait locus mapping of gene expression (eQTL) at four important seed germination stages (primary dormant, after-ripened, six-hour after imbibition, and radicle protrusion stage) using Bay x Sha recombinant inbred lines (RILs).

View Article and Find Full Text PDF

Introduction: Seed germination is inherently related to seed metabolism, which changes throughout its maturation, desiccation and germination processes. The metabolite content of a seed and its ability to germinate are determined by underlying genetic architecture and environmental effects during development.

Objective: This study aimed to assess an integrative approach to explore genetics modulating seed metabolism in different developmental stages and the link between seed metabolic- and germination traits.

View Article and Find Full Text PDF

Lettuce (Lactuca sativa) seeds exhibit thermoinhibition, or failure to complete germination when imbibed at warm temperatures. Chemical mutagenesis was employed to develop lettuce lines that exhibit germination thermotolerance. Two independent thermotolerant lettuce seed mutant lines, TG01 and TG10, were generated through ethyl methanesulfonate mutagenesis.

View Article and Find Full Text PDF

Background: Genetic markers and maps are instrumental in quantitative trait locus (QTL) mapping in segregating populations. The resolution of QTL localization depends on the number of informative recombinations in the population and how well they are tagged by markers. Larger populations and denser marker maps are better for detecting and locating QTLs.

View Article and Find Full Text PDF

A complex phenotype such as seed germination is the result of several genetic and environmental cues and requires the concerted action of many genes. The use of well-structured recombinant inbred lines in combination with "omics" analysis can help to disentangle the genetic basis of such quantitative traits. This so-called genetical genomics approach can effectively capture both genetic and epistatic interactions.

View Article and Find Full Text PDF

Perfect timing of germination is required to encounter optimal conditions for plant survival and is the result of a complex interaction between molecular processes, seed characteristics, and environmental cues. To detangle these processes, we made use of natural genetic variation present in an Arabidopsis (Arabidopsis thaliana) Bayreuth × Shahdara recombinant inbred line population. For a detailed analysis of the germination response, we characterized rate, uniformity, and maximum germination and discuss the added value of such precise measurements.

View Article and Find Full Text PDF

Natural variation provides a valuable resource to study the genetic regulation of quantitative traits. In quantitative trait locus (QTL) analyses this variation, captured in segregating mapping populations, is used to identify the genomic regions affecting these traits. The identification of the causal genes underlying QTLs is a major challenge for which the detection of gene expression differences is of major importance.

View Article and Find Full Text PDF

Over the past few decades seed physiology research has contributed to many important scientific discoveries and has provided valuable tools for the production of high quality seeds. An important instrument for this type of research is the accurate quantification of germination; however gathering cumulative germination data is a very laborious task that is often prohibitive to the execution of large experiments. In this paper we present the germinator package: a simple, highly cost-efficient and flexible procedure for high-throughput automatic scoring and evaluation of germination that can be implemented without the use of complex robotics.

View Article and Find Full Text PDF

Ectopic expression of the Brassica napus BABY BOOM (BBM) AP2/ERF transcription factor is sufficient to induce spontaneous cell proliferation leading primarily to somatic embryogenesis, but also to organogenesis and callus formation. We used DNA microarray analysis in combination with a post-translationally regulated BBM:GR protein and cycloheximide to identify target genes that are directly activated by BBM expression in Arabidopsis seedlings. We show that BBM activated the expression of a largely uncharacterized set of genes encoding proteins with potential roles in transcription, cellular signaling, cell wall biosynthesis and targeted protein turnover.

View Article and Find Full Text PDF

Applications of buthionine sulfoximine (BSO), an inhibitor of GSH (reduced glutathione), which switches the cellular glutathione pool towards the oxidized form GSSG, positively influences embryo quality by improving the structure of the shoot apical meristem and promoting embryo maturation, both of which improve the post-embryonic performance of the embryos. To investigate the mechanisms underlying BSO-mediated improvement in embryo quality the transcript profiles of developing Brassica napus microspore-derived embryos cultured in the absence (control) or presence of BSO were analyzed using a 15,000-element B. napus oligo microarray.

View Article and Find Full Text PDF

Microspore-derived embryo (MDE) cultures are used as a model system to study plant cell totipotency and as an in vitro system to study embryo development. We characterized and compared the transcriptome and proteome of rapeseed (Brassica napus) MDEs from the few-celled stage to the globular/heart stage using two MDE culture systems: conventional cultures in which MDEs initially develop as unorganized clusters that usually lack a suspensor, and a novel suspensor-bearing embryo culture system in which the embryo proper originates from the distal cell of a suspensor-like structure and undergoes the same ordered cell divisions as the zygotic embryo. Improved histodifferentiation of suspensor-bearing MDEs suggests a new role for the suspensor in driving embryo cell identity and patterning.

View Article and Find Full Text PDF

Gain-of-function studies have shown that ectopic expression of the BABY BOOM (BBM) AP2/ERF domain transcription factor is sufficient to induce spontaneous somatic embryogenesis in Arabidopsis (Arabidopsis thaliana (L.) Heynh) and Brassica napus (B. napus L.

View Article and Find Full Text PDF

Scots pine (Pinus sylvestris L.) seedlings were grown under different conditions (three field locations, two seasons and two climate room regimes), and then analyzed for freezing tolerance of shoots and roots and for transcript abundance in apical buds based on a cDNA microarray containing about 1500 expressed sequence tags (ESTs) from buds of cold-treated Scots pine seedlings. In a climate room providing long daily photoperiods and high temperatures, seedlings did not develop freezing tolerance, whereas seedlings in a climate room set to provide declining temperatures and day lengths developed moderate freezing tolerance.

View Article and Find Full Text PDF

The titan (ttn) mutants of Arabidopsis exhibit striking alterations in chromosome dynamics and cell division during seed development. Endosperm defects include aberrant mitoses and giant polyploid nuclei. Mutant embryos differ in cell size, morphology and viability, depending on the locus involved.

View Article and Find Full Text PDF