Publications by authors named "Joop J van Hemmen"

The primary process established by the European Commission to address the science needed to define key REACH concepts and to help rationally implement REACH's ambitions is enshrined in a series of activities known as the REACH Implementation Projects (RIPs). These are projects that aim to define the methodology that could be used, and present the basis for guidance on the actual principles and procedures that may be (are proposed to be) followed in the development of the required documentation that ensures the safe use of chemicals. In order to develop soundly based and equitable regulation, it is necessary that science governance using established and accepted scientific principles must take a leading role.

View Article and Find Full Text PDF

Exposure scenarios form an essential basis for chemical risk assessment reports under the new EU chemicals regulation REACH (Registration, Evaluation, Authorisation and restriction of Chemicals). In case the dermal route of exposure is predominant, information on both exposure and dermal bioavailability is necessary for a proper risk assessment. Various methodologies exist to measure dermal exposure, providing quantitative or semiquantitative information.

View Article and Find Full Text PDF

Exposure data on biocides are relatively rare in published literature, especially for secondary exposure. This is also the case for antifouling exposure. Therefore, a field study was carried out measuring exposure to antifouling paints.

View Article and Find Full Text PDF

The regulatory risk assessment of chemicals requires the estimation of occupational dermal exposure. Until recently, the models used were either based on limited data or were specific to a particular class of chemical or application. The EU project RISKOFDERM has gathered a considerable number of new measurements of dermal exposure together with detailed contextual information.

View Article and Find Full Text PDF

Dermal exposure needs to be addressed in regulatory risk assessment of chemicals. The models used so far are based on very limited data. The EU project RISKOFDERM has gathered a large number of new measurements on dermal exposure to industrial chemicals in various work situations, together with information on possible determinants of exposure.

View Article and Find Full Text PDF

The concept of occupational air requirement (OAR), representing the quantity of air required to dilute the vapor concentration in the work environment resulting from 1 l product to a concentration below the occupational exposure limit (OEL), was considered to have potential to discriminate between paints that can and cannot be used safely. The OAR is a simple algorithm with the concentration of volatile organic compound (VOC) in the paint, a discrete evaporation factor and the neurotoxicological effects-based OEL. Conceptually, OAR categories of paints for construction and maintenance applications could be identified that can be applied manually without exceeding OELs with no appreciable room ventilation.

View Article and Find Full Text PDF

Objective: The methods and results are described of a study on the dermal absorption of chlorpyrifos (CPF) in humans established via urinary excretion of the metabolite 3,5,6-trichloro-2-pyridinol (TCP).

Methods: Two dermal, single, doses of CPF were applied in two study groups (A and B) each comprising three apparently healthy male volunteers who gave their written informed consent. The clinical part of the study was conducted in compliance with the ICH Guideline and the EC principles of good clinical practice (GCP).

View Article and Find Full Text PDF

Valid and reliable semi-quantitative dermal exposure assessment methods for epidemiological research and for occupational hygiene practice, applicable for different chemical agents, are practically nonexistent. The aim of this study was to assess the reliability of a recently developed semi-quantitative dermal exposure assessment method (DREAM) by (i) studying inter-observer agreement, (ii) assessing the effect of individual observers on dermal exposure estimates for different tasks, and (iii) comparing inter-observer agreement for ranking of body parts according to their exposure level. Four studies were performed in which a total of 29 observers (mainly occupational hygienists) were asked to fill in DREAM while performing side-by-side observations for different tasks, comprising dermal exposures to liquids, solids, and vapors.

View Article and Find Full Text PDF

Introduction: Limited quantitative information is available on dermal exposure to chemicals during various industrial activities. Therefore, within the scope of the EU-funded RISKOFDERM project, potential dermal exposure was measured during three different tasks: filling, loading and brushing. DEGBE (2-(2-butoxyethoxy)ethanol) was used as a 'marker' substance to determine dermal exposure to the products that workers were handling.

View Article and Find Full Text PDF

Introduction: The RISKOFDERM project collected task-based estimates of potential dermal exposure from a wide range of industries and services from around Europe. A formal statistical analysis was carried out to explore the main components of variability in dermal exposure levels. The central research question was to what extent dermal exposure levels could be explained by generic grouping variables like 'exposure scenarios' and 'dermal exposure operation units' (DEOs) (grouping of scenarios on the basis of similarity in exposure patterns).

View Article and Find Full Text PDF

Dermal exposure to industrial chemicals during work is of major concern in the risk assessment of chemicals. Current approaches in procedures for European legislation are not based on experimental data on dermal exposures in workplaces because these are lacking. A large project, with four interrelated work parts, was funded by the European Commission (DG Research) in order to overcome large parts of this problem.

View Article and Find Full Text PDF

This paper describes a new method (DREAM) for structured, semi-quantitative dermal exposure assessment for chemical or biological agents that can be used in occupational hygiene or epidemiology. It is anticipated that DREAM could serve as an initial assessment of dermal exposure, amongst others, resulting in a ranking of tasks and subsequently jobs. DREAM consists of an inventory and evaluation part.

View Article and Find Full Text PDF