Taurine, biosynthesized from methionine or cysteine in the liver, plays a crucial regulatory role in bile acid conjugation, antioxidant effects, and glucose and cholesterol metabolism. This may influence the metabolic changes associated with fat accumulation in beef cattle. However, the physiological role of taurine in this species has not been fully elucidated.
View Article and Find Full Text PDFWe hypothesized that the provision of rumen-inert fat (RIF) to growing cattle (9 to 13 mo of age) would affect the expression of genes involved in lipid metabolism and thereby affect the size and number of adipocytes of steers slaughtered at 30 mo of age. Thirty steers with an average initial body weight (BW) of 239 ± 25 kg were allocated to six pens, balanced for BW and genetic merit for marbling, and assigned to one of two treatment groups: control (only basal diet) or test diet (basal diet with 200 g of RIF per day, on an as-fed basis) for 5 mo. Biopsy samples of longissimus lumborum (LM) muscle were then collected for analysis of fatty acid composition and gene expression.
View Article and Find Full Text PDFThe hand-held laser methane detector (LMD) technique has been suggested as an alternative method for measuring methane (CH4) emissions from enteric fermentation of ruminants in the field. This study aimed to establish a standard procedure for using LMD to assess CH4 production in cattle and evaluate the efficacy of the protocol to detect differences in CH4 emissions from cattle fed with diets of different forage-to-concentrate (FC) ratios. Experiment 1 was conducted with four Hanwoo steers (584 ± 57.
View Article and Find Full Text PDFThe objective of this experiment was to compare ruminal fluid samples collected through rumen cannula (RC) or using an oral stomach tube (ST) for measurement of ruminal fermentation and microbiota variables. Six ruminally cannulated lactating Holstein cows fed a standard diet were used in the study. Rumen samples were collected at 0, 2, 4, 6, 8, and 12 h after the morning feeding on two consecutive days using both RC and ST techniques.
View Article and Find Full Text PDFEnteric methane (CH ) production from cattle contributes to global greenhouse gas emissions. Measurement of enteric CH is complex, expensive, and impractical at large scales; therefore, models are commonly used to predict CH production. However, building robust prediction models requires extensive data from animals under different management systems worldwide.
View Article and Find Full Text PDFRuminant animals (domesticated or wild) emit methane (CH4) through enteric fermentation in their digestive tract and from decomposition of manure during storage. These processes are the major sources of greenhouse gas (GHG) emissions from animal production systems. Techniques for measuring enteric CH4 vary from direct measurements (respiration chambers, which are highly accurate, but with limited applicability) to various indirect methods (sniffers, laser technology, which are practical, but with variable accuracy).
View Article and Find Full Text PDFA quarter of all anthropogenic methane emissions in the United States are from enteric fermentation, primarily from ruminant livestock. This study was undertaken to test the effect of a methane inhibitor, 3-nitrooxypropanol (3NOP), on enteric methane emission in lactating Holstein cows. An experiment was conducted using 48 cows in a randomized block design with a 2-wk covariate period and a 12-wk data collection period.
View Article and Find Full Text PDF