J Phys Condens Matter
January 2009
Gd(2)O(3) and Gd-doped HfO(2) films were deposited on p-type silicon substrates in a reducing atmosphere. Gd 4f photoexcitation peaks at roughly 7 and 5 eV below the valence band maximum have been identified using the resonant photoemission of Gd(2)O(3) and Gd-doped HfO(2) films, respectively. In the case of Gd(2)O(3), strong hybridization with the O 2p band is demonstrated, and there is evidence that the Gd 4f weighted band exhibits dispersion in the bulk band structure.
View Article and Find Full Text PDFIn solids the phonon-assisted, nonradiative decay from high-energy electronic excited states to low-energy electronic excited states is picosecond fast. It was hoped that electron and hole relaxation could be slowed down in quantum dots, due to the unavailability of phonons energy matched to the large energy-level spacings ("phonon-bottleneck"). However, excited-state relaxation was observed to be rather fast (< or =1 ps) in InP, CdSe, and ZnO dots, and explained by an efficient Auger mechanism, whereby the excess energy of electrons is nonradiatively transferred to holes, which can then rapidly decay by phonon emission, by virtue of the densely spaced valence-band levels.
View Article and Find Full Text PDF