Publications by authors named "Joong Sup Shim"

FHIT is a fragile site tumor suppressor that is primarily inactivated upon tobacco smoking. FHIT loss is frequently observed in lung cancer, making it an important biomarker for the development of targeted therapy for lung cancer. Here, we report that inhibitors of glycogen synthase kinase 3 beta (GSK3β) and the homologous recombination DNA repair (HRR) pathway are synthetic lethal with FHIT loss in lung cancer.

View Article and Find Full Text PDF

Breast cancer is a leading cause of cancer mortality among women globally, with over 2.26 million new cases annually, according to GLOBOCAN 2020. This accounts for approximately 25% of all new female cancers and 15.

View Article and Find Full Text PDF

Loss of PTEN tumor suppressor is an important event during colorectal cancer (CRC) development and is a target for therapeutic exploitation. This study reports that bromodomain and extra-terminal motif (BET) is a synthetic lethal partner of PTEN in CRC. BET inhibition (BETi) selectively induced G1 cell cycle arrest and apoptosis in CRC.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer where no effective therapy has been developed. Here, we report that the natural product ER translocon inhibitor ipomoeassin F is a selective inhibitor of TNBC cell growth. A proteomic analysis of TNBC cells revealed that ipomoeassin F significantly reduced the levels of ER molecular chaperones, including PDIA6 and PDIA4, and induced ER stress, unfolded protein response (UPR) and autophagy in TNBC cells.

View Article and Find Full Text PDF

Colorectal cancer (CRC) driven by deficiency exhibits high risk of metastasis, advancement of tumor stages and chemotherapy resistance, where no effective therapy has been developed. In this study, we performed a synthetic lethal drug screening in CRC and found that PTEN-deficient CRC cells are highly vulnerable to MDM2 inhibition. MDM2 inhibitor treatment or its silencing selectively inhibited the growth of PTEN-deficient CRC in vitro and in mice models.

View Article and Find Full Text PDF

Unlabelled: Cancer metastasis is an extremely complex process affected by many factors. An acidic microenvironment can drive cancer cell migration toward blood vessels while also hampering immune cell activity. Here, we identified a mechanism mediated by sialyltransferases that induces an acidic tumor-permissive microenvironment (ATPME) in BRCA1-mutant and most BRCA1-low breast cancers.

View Article and Find Full Text PDF

Aurora A plays a critical role in G2/M transition and mitosis, making it an attractive target for cancer treatment. Aurora A inhibitors showed remarkable antitumor effects in preclinical studies, but unsatisfactory outcomes in clinical trials have greatly limited their development. In this study, the Aurora A inhibitor alisertib upregulated programmed death ligand 1 (PD-L1) expression in a panel of tumor cells both in vitro and in vivo.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER) is a critical organelle that preserves the protein homeostasis of cells. Under various stress conditions, cells evolve a degree of capacity to maintain ER proteostasis, which is usually augmented in tumor cells, including colorectal cancer (CRC) cells, to bolster their survival and resistance to apoptosis. Bortezomib (BTZ) is a promising drug used in CRC treatment; however, its main limitation result from drug resistance.

View Article and Find Full Text PDF

Neurodegenerative diseases (NDs) are a diverse group of disorders characterized by the progressive degeneration of the structure and function of the central or peripheral nervous systems. One of the major features of NDs, such as Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD), is the aggregation of specific misfolded proteins, which induces cellular dysfunction, neuronal death, loss of synaptic connections and eventually brain damage. By far, a great amount of evidence has suggested that TRIM family proteins play crucial roles in the turnover of normal regulatory and misfolded proteins.

View Article and Find Full Text PDF
Article Synopsis
  • - G protein-coupled receptors (GPCRs) are vital drug targets, yet over 70% are difficult to target with traditional drugs due to their "undruggable" nature.
  • - The research introduces small activating RNAs (saRNAs) that can specifically increase the expression of the Mas receptor (MAS1), a GPCR linked to cancer progression.
  • - Administered through a specialized delivery system, these saRNAs significantly suppress tumor growth and progression in various cancer models, suggesting a promising new approach to cancer treatment by targeting GPCR signaling.
View Article and Find Full Text PDF

SMAD4 loss-of-function mutations have been frequently observed in colorectal cancer (CRC) and are recognized as a drug target for therapeutic exploitation. In this study, we performed a synthetic lethal drug screening with SMAD4-isogenic CRC cells and found that aurora kinase A (AURKA) inhibition is synthetic lethal with SMAD4 loss. Inhibition of AURKA selectively inhibited the growth of SMAD4 CRC in vitro and in vivo.

View Article and Find Full Text PDF

Retinitis pigmentosa (RP) and associated inherited retinal diseases (IRDs) are caused by rod photoreceptor degeneration, necessitating therapeutics promoting rod photoreceptor survival. To address this, we tested compounds for neuroprotective effects in multiple zebrafish and mouse RP models, reasoning drugs effective across species and/or independent of disease mutation may translate better clinically. We first performed a large-scale phenotypic drug screen for compounds promoting rod cell survival in a larval zebrafish model of inducible RP.

View Article and Find Full Text PDF
Article Synopsis
  • Precision cancer medicine focuses on customizing treatments based on the unique genomic profiles of individual cancer patients, primarily targeting mutated oncogenes.
  • Synthetic lethality offers a way to address defective tumor suppressors by exploiting cancer cells' reliance on certain proteins, which can lead to effective treatments, as seen with BRCA-PARP therapy for breast and ovarian cancer.
  • The review highlights recent progress in using natural products to discover drugs that target cancer cell dependencies and emphasizes the need for more research in this area for precision cancer medicine.
View Article and Find Full Text PDF

Recent advances in high-throughput sequencing technologies and data science have facilitated the development of precision medicine to treat cancer patients. Synthetic lethality is one of the core methodologies employed in precision cancer medicine. Synthetic lethality describes the phenomenon of the interplay between two genes in which deficiency of a single gene does not abolish cell viability but combined deficiency of two genes leads to cell death.

View Article and Find Full Text PDF
Article Synopsis
  • - Nasopharyngeal carcinoma (NPC) is a common cancer in Southeast Asia with varying subtypes that show different molecular characteristics, drug responses, and sensitivity to radiation treatment.
  • - The epithelial carcinoma (EC) subtype is linked to issues with cell division and microtubule function, while sarcomatoid (SC) and mixed subtypes (MSEC) have genes associated with cell movement and invasion.
  • - By using patient-derived organoids, the study identifies subtype-specific treatments: SC and MSEC respond well to microtubule inhibitors, and EC responds better to EGFR inhibitors, especially when combined with radiotherapy.
View Article and Find Full Text PDF

The tumor suppressor SMAD4 is frequently mutated in colorectal cancer (CRC). However, no effective targeted therapies exist for CRC with SMAD4 loss. Here, we employed a synthetic lethality drug screening in isogenic SMAD4 and SMAD4 HCT116 CRC cells and found that bromodomain and extra-terminal motif (BET) inhibitors, as selective drugs for the growth of SMAD4 HCT116 cells.

View Article and Find Full Text PDF

Two new ring-size-varying analogues ( and ) of ipomoeassin F were synthesized and evaluated. Improved cytotoxicity (IC: from 1.8 nM) and in vitro protein translocation inhibition (IC: 35 nM) derived from ring expansion imply that the binding pocket of Sec61α (isoform 1) can accommodate further structural modifications, likely in the fatty acid portion.

View Article and Find Full Text PDF

Macroautophagy/autophagy (hereafter autophagy), the process of mass degradation of unnecessary elements within the cell, is often dysregulated in many diseases such as cancer, atherosclerosis, and neurodegenerative diseases. Hence, autophagy modulating agents have a great potential to be therapeutic agents for the autophagy-related diseases. Here we report that an anti-depressant drug sertraline (Sert) is an autophagy-inducing agent.

View Article and Find Full Text PDF

RB1 mutational inactivation is a cancer driver in various types of cancer including lung cancer, making it an important target for therapeutic exploitation. We performed chemical and genetic vulnerability screens in RB1-isogenic lung cancer pair and herein report that aurora kinase A (AURKA) inhibition is synthetic lethal in RB1-deficient lung cancer. Mechanistically, RB1 cells show unbalanced microtubule dynamics through E2F-mediated upregulation of the microtubule destabilizer stathmin and are hypersensitive to agents targeting microtubule stability.

View Article and Find Full Text PDF

PTEN, a tumor suppressor, is found loss of function in many cancers, including colorectal cancer. To identify the synthetic lethal compounds working with PTEN deficiency, we performed a synthetic lethality drug screening with PTEN-isogenic colorectal cancer cells. From the screening, we found that colorectal cancer cells were sensitive to anacardic acid, a p300/CBP histone acetyltransferase (HAT) inhibitor.

View Article and Find Full Text PDF

Breast cancer susceptibility gene 1 () is a tumor suppressor gene, which is frequently mutated in breast and ovarian cancers. BRCA1 plays a key role in the homologous recombination directed DNA repair, allowing its deficiency to act as a therapeutic target of DNA damaging agents. In this study, we found that inhibition of the class I histone deacetylases (HDAC) exhibited synthetic lethality with BRCA1 deficiency in breast cancer cells.

View Article and Find Full Text PDF

Cholesterol is an essential structural component of cellular membranes. In addition to the structural role, it also serves as a precursor to a variety of steroid hormones and has diverse functions in intracellular signal transduction. As one of its functions in cell signaling, recent evidence suggests that cholesterol plays a key role in regulating angiogenesis.

View Article and Find Full Text PDF

Cholesterol plays a key role in membrane protein function and signaling in endothelial cells. Thus, disturbing cholesterol trafficking is an effective approach for inhibiting angiogenesis. We recently identified astemizole (AST), an antihistamine drug, as a cholesterol trafficking inhibitor from a phenotypic screen.

View Article and Find Full Text PDF

PTEN is a tumor suppressor found mutated in many cancers. From a synthetic lethality drug screen with PTEN-isogenic colorectal cancer cells, we found that mutant-PTEN cells were resistant to dual inhibitors of FLT3 and aurora kinase-A, including KW2449 and ENMD-2076. KW2449 significantly reduced the viability of wildtype-PTEN cells causing apoptosis, while little effect was observed in mutant-PTEN counterparts.

View Article and Find Full Text PDF

ARID1A, a component of the SWI/SNF chromatin remodeling complex, is a tumor suppressor with a high frequency of inactivating mutations in many cancers. Therefore, ARID1A deficiency has been exploited therapeutically for treating cancer. Here we show that ARID1A has a synthetic lethal interaction with aurora kinase A (AURKA) in colorectal cancer (CRC) cells.

View Article and Find Full Text PDF