Longitudinally polarized optical needles are beams that exhibit ultra-long depth of field, subwavelength transverse confinement, and polarization oriented along the longitudinal direction. Although several techniques have been proposed to generate such needles, their scarce experimental observations have been indirect and incomplete. Here, we demonstrate the creation and full three-dimensional verification of a longitudinally polarized optical needle.
View Article and Find Full Text PDFA method to detect optical modes from vertical InGaAs nanowires (NWs) using cross-polarization microscopy is presented. Light scattered from the optical modes in the NWs is detected by filtering out the polarized direct reflection with a crossed polarizer. A spectral peak and a valley were seen to red-shift with increasing NW diameter in the measured spectra.
View Article and Find Full Text PDFThe three-dimensional (3D) optical fields that arise from the focusing of cylindrical vector beams (CVB) with radial and azimuthal polarizations provide new sources of contrast for optical microscopy of nano-objects. So far, these demonstrations have been restricted to two-dimensional transversal scanning, i.e.
View Article and Find Full Text PDFThe Young's modulus of thin conical InP nanowires with either wurtzite or mixed "zinc blende/wurtzite" structures was measured. It has been shown that the value of Young's modulus obtained for wurtzite InP nanowires (E = 130 ± 30 GPa) was similar to the theoretically predicted value for the wurtzite InP material (E = 120 ± 10 GPa). The Young's modulus of mixed "zinc blende/wurtzite" InP nanowires (E = 65 ± 10 GPa) appeared to be 40% less than the theoretically predicted value for the zinc blende InP material (E = 110 GPa).
View Article and Find Full Text PDFWe demonstrate nonlinear microscopy of oriented nanowires using excitation beams with binary phase modulation. A simple and intuitive optical scheme comprising a spatial light modulator gives us the possibility to control the phase across an incident Hermite-Gaussian beam of order (1,0) (HG mode). This technique allows us to gradually vary the spatial distribution of the longitudinal electric fields in the focal volume, as demonstrated by second-harmonic generation from vertically-aligned GaAs nanowires.
View Article and Find Full Text PDFWe report on the synthesis of Au-catalyzed InP nanowires (NWs) on low-cost glass substrates. Ultra-dense and ultra-long (up to ∼250 μm) InP NWs, with an exceptionally high growth rate of ∼25 μm min, were grown directly on glass using metal organic vapor phase epitaxy (MOVPE). Structural properties of InP NWs grown on glass were similar to the ones grown typically on Si substrates showing many structural twin faults but the NWs on glass always exhibited a stronger photoluminescence (PL) intensity at room temperature.
View Article and Find Full Text PDFSimilar to electron waves, the phonon states in semiconductors can undergo changes induced by external boundaries. However, despite strong scientific and practical importance, conclusive experimental evidence of confined acoustic phonon polarization branches in individual free-standing nanostructures is lacking. Here we report results of Brillouin-Mandelstam light scattering spectroscopy, which reveal multiple (up to ten) confined acoustic phonon polarization branches in GaAs nanowires with a diameter as large as 128 nm, at a length scale that exceeds the grey phonon mean-free path in this material by almost an order-of-magnitude.
View Article and Find Full Text PDFA facile and scalable lithography-free technique(5) for the rapid construction of GaAs core-shell nanowires incorporating shell isolation from the substrate is reported. The process is based on interrupting NW growth and applying a thin spin-on-glass (SOG) layer to the base of the NWs and resuming core-shell NW growth. NW growth occurred in an atmospheric pressure metalorganic vapour phase epitaxy (MOVPE) system with gold nanoparticles used as catalysts for the vapour-liquid-solid growth.
View Article and Find Full Text PDFA novel method for fabricating dual-type nanowire (NW) arrays is presented. Two growth steps, selective-area epitaxy (SAE) in the first step and vapor-liquid-solid (VLS) in the second step, are used to grow two types of NWs on the same GaAs substrate. Different precursors can be used for the growth steps, resulting in sophisticated compositional control, as demonstrated for side-by-side grown GaAs and InP NWs.
View Article and Find Full Text PDFWe report a new phenomenon related to Al-induced carrier confinement at the interface in core-shell GaAs/Al(x)Ga(1-x)As nanowires grown using metal-organic vapor phase epitaxy with Au as catalyst. All Al(x)Ga(1-x)As shells strongly passivated the GaAs nanowires, but surprisingly the peak photoluminescence (PL) position and the intensity from the core were found to be a strong function of Al composition in the shell at low temperatures. Large and systematic red shifts of up to ~66 nm and broadening in the PL emission from the GaAs core were observed when the Al composition in the shell exceeded 3%.
View Article and Find Full Text PDF