Publications by authors named "JoonHyun Kwon"

Magnetic random-access memory (MRAM), which stores information through control of the magnetization direction, offers promising features as a viable nonvolatile memory alternative, including high endurance and successful large-scale commercialization. Recently, MRAM applications have extended beyond traditional memories, finding utility in emerging computing architectures such as in-memory computing and probabilistic bits. In this work, we report highly reliable MRAM-based security devices, known as physical unclonable functions (PUFs), achieved by exploiting nanoscale perpendicular magnetic tunnel junctions (MTJs).

View Article and Find Full Text PDF

Physical unclonable function (PUFs) utilize inherent random physical variations of solid-state devices and are a core ingredient of hardware security primitives. PUFs promise more robust information security than that provided by the conventional software-based approaches. While silicon- and memristor-based PUFs are advancing, their reliability and scalability require further improvements.

View Article and Find Full Text PDF

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

View Article and Find Full Text PDF

Spin-based electronic devices on polymer substrates have been intensively investigated because of several advantages in terms of weight, thickness, and flexibility, compared to rigid substrates. So far, most studies have focused on maintaining the functionality of devices with minimum degradation against mechanical deformation, as induced by stretching and bending of flexible devices. Here, we applied repetitive bending stress on a flexible magnetic layer and a spin-valve structure composed of Ta/NiFe/CoFe/Cu/Ni/IrMn/Ta on a polyimide (PI) substrate.

View Article and Find Full Text PDF