Publications by authors named "Joon-Weon Choi"

Organic contaminants from wastewater toxicity to the environment has increased during the last few decades and, therefore, there is an urgent need to decontaminate wastewater prior to disposal. This study aimed to create a high surface area catalytic activated carbon (AC) under same carbonization conditions for phenol and methylene blue (organic wastewater) decontamination. husk (MH), sesame husk (SH), and baobab husk (BH) were used to prepare activated carbon for the removal of methylene blue (MB) and phenol (Ph).

View Article and Find Full Text PDF

A key component in a nation's economic progress is industrialization, however, hazardous heavy metals that are detrimental to living things are typically present in the wastewater produced from various industries. Therefore, before wastewater is released into the environment, it must be treated to reduce the concentrations of the various heavy metals to maximum acceptable levels. Even though several biological, physical, and chemical remediation techniques are found to be efficient for the removal of heavy metals from wastewater, these techniques are costly and create more toxic secondary pollutants.

View Article and Find Full Text PDF

In this study, polyurethane (PU) foams were manufactured using kraft lignin and castor oil as bio-based polyols by replacing 5-20 wt% and 10-100 wt% of conventional polyol, respectively. To investigate the effects of unmodified bio-based polyols on PU foam production, reactivity and morphology within PU composites was analyzed as well as mechanical and thermal properties of the resulting foams. Bio-based PU foam production was carried out after characterizing the reagents used in the foaming process (including hydroxyl group content, molecular weight distribution, and viscosity).

View Article and Find Full Text PDF

Desorption and adsorbent regeneration are imperative factors that are required to be taken into account when designing the adsorption system. From the environmental, economic, and practical points of view, regeneration is necessary for evaluating the efficiency and sustainability of synthesized adsorbents. However, no study has investigated the optimization of arsenic species desorption from spent adsorbents and their regeneration ability for reuse as well as safe disposal.

View Article and Find Full Text PDF

A growing number of variables, including rising population, water scarcity, growth in the economy, and the existence of harmful heavy metals in the water supply, are contributing to the increased demand for wastewater treatment on a global scale. One of the innovative water treatment technologies is the adsorptive removal of heavy metals through the application of natural and engineered adsorbents. However, adsorption currently has setbacks that prevent its wider application for heavy metals sequestration from aquatic environments using various adsorbents, including difficulty in selecting suitable desorption eluent to recover adsorbed heavy metals and regeneration techniques to recycle the spent adsorbents for further use and safe disposal.

View Article and Find Full Text PDF

In this study, acetylated soda lignin (ASL) and non-acetylated soda lignin (SL) were extruded with PLA in different concentrations to fabricate antioxidant polylactic acid (PLA)/lignin composites for potential biomedical applications. After lignin acetylation, good compatibility was observed between PLA and lignin in scanning electron microscopy images. All the PLA/ASL composites displayed higher mechanical properties than PLA/SL composites.

View Article and Find Full Text PDF

The efficient strategy for waste conversion and resource recovery is of great interest in the sustainable bioeconomy context. This work reports on the catalytic upcycling of waste corrugated cardboard (WCC) into lactic acid using lanthanide triflates catalysts. WCC, a primary contributor to municipal solid wastes, has been viewed as a feedstock for producing a wide range of renewable products.

View Article and Find Full Text PDF

In this study activated carbons were produced from the biorefinery waste lignin (Asian lignin (AL) USA & Inbicon lignin (IL) Denmark) to evaluate their potential in waste water treatment and as energy storage devices. These products were studied for their surface characteristics as a function of reaction temperature, time, and catalyst loading accordingly. Under the conditions with a temperature lower than 750 °C and within a reaction time of 1 h, the catalytic reaction of alkali-carbon bonding occurred from the external surface, and a turbostratic disorder structure with a large aromatic ring system was formed.

View Article and Find Full Text PDF

Drought is a common abiotic stress for terrestrial plants and often affects crop development and yield. Recent studies have suggested that lignin plays a crucial role in plant drought tolerance; however, the underlying molecular mechanisms are still largely unknown. Here, we report that the rice (Oryza sativa) gene CINNAMOYL-CoA REDUCTASE 10 (OsCCR10) is directly activated by the OsNAC5 transcription factor, which mediates drought tolerance through regulating lignin accumulation.

View Article and Find Full Text PDF

Alkaline soda lignin (AL) was sequentially fractionated into six fractions of different molecular size by means of solvent extraction and their phenolic hydroxyl groups were chemoselectively methylated to determine their effect on nanoparticle formation of lignin polymers. The effect of the lignin structure on the physical properties of nanoparticles was also clarified in this study. Nanoparticles were obtained from neat alkaline soda lignin (ALNP), solvent-extracted fractions (FALNPs, i.

View Article and Find Full Text PDF

This study investigated effects of different thermal processes on characteristics of activated carbon to produce efficient biosorbents or supercapacitors using biomass resources. Pyrolysis char and hydrochar obtained from woody biomass were used as precursors for activated carbon under different atmospheric conditions (N and air). In order to provide functional groups on the carbon surface, activated carbon under N condition was subsequently acidified by HNO and the other was simultaneously acidified under air condition.

View Article and Find Full Text PDF

This study aimed to determine the effects of lignin characteristics (mainly molecular weight, functional groups, and internal linkages) on nanoparticle formation. First, five different lignin fractions (M 1460-12,900) were obtained from commercial kraft lignin (KL) by sequential solvent extraction. Functional groups and internal linkages were determined in lignin fractions, each fraction consisting of different levels and ratios.

View Article and Find Full Text PDF

To obtain high-quality biofuel, bio-oil obtained from fast pyrolysis of woody biomass was pretreated with ion exchange resin (amberlyst 36) at 50°C, 100°C, and 150°C, and then the recovered liquid product was upgraded using hydrodeoxygenation (HDO) with Pt/C at 300°C. After the two-stage upgrading, 4 types of products (gas, light oil, heavy oil, and char) were obtained. Two-immiscible liquid products were consisted of organic heavy oil, derived from bio-oil, and aqueous light oil, based on the ethanol.

View Article and Find Full Text PDF

Lignin was fractionated with several organic solvents and fractions were utilized for UV resistant lignin-PLA composites. First, soda lignin (SL) was sequentially fractionated into six fractions: ethyl acetate (F1), 2-butanone (F2), methanol (F3), acetone (F4), dioxane/water (F5), and an insoluble fraction (INS). Molecular weight of the fractions increased from F1 to F5 and phenolic hydroxyl contents decreased with increasing molecular weight of fractions.

View Article and Find Full Text PDF

Long-time exposure to the sun's ultraviolet (UV) radiation is harmful and causes various skin problems. Natural sun blockers have been drawing considerable attention recently. Even though lignin, an abundant aromatic polymer from plants, is a natural UV screening agent, its unfavorable dark color hinders its high value-added applications in sunscreens and cosmetics.

View Article and Find Full Text PDF

We present environmentally friendly brake pads produced with three different types of lignin, soda lignin (SL), sulphuric acid lignin (SAL) and heat-treated SAL (HL), as frictional materials to replace phenol formaldehyde resin (PFR, binder) and cashew nut shell liquid (CNSL, filler) in commercial automobile brake pad. Then the performance characteristics of the were tested and compared using several fundamental tests. The results showed that lignin-added brake pads adhered to the SAE standard (0.

View Article and Find Full Text PDF

Hydrothermal liquefaction (HTL) of lignocellulosic biomass has been widely investigated for the production of renewable and alternative bio-crude oil. In this study, catalytic hydrothermal processing of two biomasses (larch and Mongolian oak) was performed using different KCO concentrations (0, 0.1, 0.

View Article and Find Full Text PDF

Lignin solvent fractionation is one of the promising methods for homogenizing and utilizing lignin commercially. In this work, fractionation characteristics of two lignin fractions were compared to investigate the potential of utilization of fractionated lignin. Two lignins [milled wood lignin(MWL) and organosolv lignin(OL) from yellow poplar] were sequentially fractionated with ethyl acetate(F1), 2-butanone(F2), methanol(F3), acetone(F4), and dioxane/water(F5).

View Article and Find Full Text PDF

Crosslinked chitosan was prepared by Schiff base formation between the aldehyde groups of dialdehyde cellulose (DAC) and the amino groups of chitosan and a subsequent reduction. DAC was obtained through periodate oxidation of cellulose and solubilization in hot water at 100°C for 1h. Three grades of DAC-crosslinked chitosan were prepared by adding various amounts DAC.

View Article and Find Full Text PDF

The objectives of this research were to produce a levulinic acid by two-step acid-catalyzed treatment of Quercus mongolica and to investigate the effect of treatment parameter (reaction temperature range: 100-230°C; sulfuric acid (SA) concentration range: 0-2%) on the levulinic acid yield. After 1 step acid-catalyzed treatment, most of the hemicellulosic C5 sugars (15.6gg/100gbiomass) were released into the liquid hydrolysate at the reaction temperature of 150°C in 1% SA; the solid fraction, which contained 53.

View Article and Find Full Text PDF

Many issues have been found to be related to food preservation and food contamination caused by various pathogenic bacteria in recent years. Many antibacterial agents act efficiently against Gram-positive foodborne bacteria; however, they are less effective against Gram-negative foodborne bacteria. In the present study, an attempt has been made to evaluate the antibacterial activity of pyrolysis oil manufactured from Pinus densiflora (PLO) against two Gram-negative foodborne pathogenic bacteria, Salmonella Typhimurium and Escherichia coli O157:H7.

View Article and Find Full Text PDF

Foodborne bacteria are the leading cause of food spoilage and other related diseases. In the present study, the antibacterial activity of bio-oil (BO) manufactured by fast pyrolysis of pinewood sawdust (Pinus densiflora Siebold and Zucc.) against two disease-causing foodborne pathogens (Bacillus cereus and Listeria monocytogenes) was evaluated.

View Article and Find Full Text PDF

In the present study, sawdust bio-oil (SBO) manufactured by fast pyrolysis of Japanese red pine (Pinus densiflora Siebold and Zucc.) sawdust was analyzed for its volatile chemical compound composition and evaluated for its free radical scavenging potential, inhibition of lipid peroxidation and reducing power. Gas chromatography and mass spectroscopy revealed 29 volatile compounds, comprising 97.

View Article and Find Full Text PDF

Wood component-based composite hydrogels have potential applications in biomedical fields owing to their low cost, biodegradability, and biocompatibility. The controllable properties of wood mimetic composites containing three major wood components are useful for enzyme immobilization. Here, lipase from Candida rugosa was entrapped in wood mimetic beads containing cellulose, xylan, and lignin by dissolving wood components with lipase in [Emim][Ac], followed by reconstitution.

View Article and Find Full Text PDF

Miscanthus bio-oil was subjected to hydrodeoxygenation (HDO) with Pd/C at different temperatures (250, 300 and 350°C) and times (30, 45 and 60 min) to investigate the chemical modification of micro- and macromolecules in bio-oil. Four main products - char, gas and two immiscible oils (light and heavy oil) - were obtained from the HDO reaction. Yields of heavy oil as a targeting product of HDO varied from 60% to 13%, whereas those of gas and char were ranged from 7% to 36% and 6% to 17%, respectively.

View Article and Find Full Text PDF