The high Z chalcohalides HgQI (Q = S, Se, and Te) can be regarded as of antiperovskite structure with ordered vacancies and are demonstrated to be very promising candidates for X- and γ-ray semiconductor detectors. Depending on Q, the ordering of the Hg vacancies in these defect antiperovskites varies and yields a rich family of distinct crystal structures ranging from zero-dimensional to three-dimensional, with a dramatic effect on the properties of each compound. All three HgQI compounds show very suitable optical, electrical, and good mechanical properties required for radiation detection at room temperature.
View Article and Find Full Text PDFThe chalcohalide compound TlSeI is a promising wide-bandgap semiconductor for efficient hard radiation detection at room temperature due to its high density, average atomic number and mobility-lifetime product. However, the nature of its charge transport kinetics, especially the role of defects in recombination, has not been examined in detail. To determine the charge transport kinetics in TlSeI single crystals, electrical conductivity and photoinduced current transient spectroscopy were measured over the temperature range 105-330 K.
View Article and Find Full Text PDFThe ectopic bone formation of recombinant human bone morphogenetic protein-2(rhBMP-2) was evaluated using absorbable collagen sponges (ACS) and beta tricalcium phosphate (beta-TCP) as carriers in a rat subcutaneous assay model. Subcutaneous pockets were created on the back of rats. The pockets were implanted with rhBMP-2/ACS, rhBMP-2/beta-TCP, ACS alone, and beta-TCP alone.
View Article and Find Full Text PDF