Intestinal stem cells (ISCs) at the crypt base contribute to intestinal homeostasis through a balance between self-renewal and differentiation. However, the molecular mechanisms regulating this homeostatic balance remain elusive. Here we show that the matricellular protein CCN1/CYR61 coordinately regulates ISC proliferation and differentiation through distinct pathways emanating from CCN1 interaction with integrins αβ/αβ.
View Article and Find Full Text PDFExpression of the matricellular protein CCN1 (CYR61) is associated with inflammation and is required for successful wound repair. Here, we show that CCN1 binds bacterial pathogen-associated molecular patterns including peptidoglycans of Gram-positive bacteria and lipopolysaccharides of Gram-negative bacteria. CCN1 opsonizes methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa and accelerates their removal by phagocytosis and increased production of bactericidal reactive oxygen species in macrophages through the engagement of integrin αβ.
View Article and Find Full Text PDFFibrosis is the excessive accumulation of extracellular matrix that often occurs as a wound healing response to repeated or chronic tissue injury, and may lead to the disruption of organ architecture and loss of function. Although fibrosis was previously thought to be irreversible, recent evidence indicates that certain circumstances permit the resolution of fibrosis when the underlying causes of injury are eradicated. The mechanism of fibrosis resolution encompasses degradation of the fibrotic extracellular matrix as well as elimination of fibrogenic myofibroblasts through their adaptation of various cell fates, including apoptosis, senescence, dedifferentiation, and reprogramming.
View Article and Find Full Text PDFNeutrophil infiltration constitutes the first step in wound healing, although their timely clearance by macrophage engulfment, or efferocytosis, is critical for efficient tissue repair. However, the specific mechanism for neutrophil clearance in wound healing remains undefined. Here we uncover a key role for CCN1 in neutrophil efferocytosis by acting as a bridging molecule that binds phosphatidylserine, the 'eat-me' signal on apoptotic cells and integrins αvβ3/αvβ5 in macrophages to trigger efferocytosis.
View Article and Find Full Text PDFNat Rev Drug Discov
December 2011
Members of the CCN family of matricellular proteins are crucial for embryonic development and have important roles in inflammation, wound healing and injury repair in adulthood. Deregulation of CCN protein expression or activities contributes to the pathobiology of various diseases - many of which may arise when inflammation or tissue injury becomes chronic - including fibrosis, atherosclerosis, arthritis and cancer, as well as diabetic nephropathy and retinopathy. Emerging studies indicate that targeting CCN protein expression or signalling pathways holds promise in the development of diagnostics and therapeutics for such diseases.
View Article and Find Full Text PDFMammalian wound healing involves the rapid synthesis and deposition of extracellular matrix (ECM) to maintain tissue integrity during repair. This process must be tightly controlled, as its deregulation may result in fibrosis, scarring, and loss of tissue function. Recent studies have uncovered an efficient and parsimonious mechanism for rendering fibrogenesis self-limiting in wound healing: in such diverse organs as the liver and skin, the myofibroblasts that initially proliferate and produce ECM are themselves eventually driven into senescence, blocking their further proliferation and converting them into matrix-degrading cells.
View Article and Find Full Text PDFCellular senescence is a recognized mechanism of tumour suppression; however, its contribution to other pathologies is not well understood. We show that the matricellular protein CCN1 (also known as CYR61; cysteine-rich protein 61), which is dynamically expressed at sites of wound repair, can induce fibroblast senescence by binding to integrin alpha(6)beta(1) and the heparan sulphate proteoglycans (receptors involved in cell adhesion). CCN1 induces DNA damage response pathways and activates p53 and the RAC1-NOX1 complex, which generates reactive oxygen species (ROS).
View Article and Find Full Text PDFAutophagic cell death is characterized by the accumulation of vacuoles in physiological and pathological conditions. However, its molecular event is unknown. Here, we show that Atg5, which is known to function in autophagy, contributes to autophagic cell death by interacting with Fas-associated protein with death domain (FADD).
View Article and Find Full Text PDFWe have identified a novel CARD-containing protein from EST database. BinCARD (Bcl10-interacting protein with CARD). BinCARD was ubiquitously expressed.
View Article and Find Full Text PDFCaspase-8 is the most receptor-proximal, upstream caspase in the caspase cascade and plays a key role in cell death triggered by various death receptors. Here, we addressed the role of endogenous caspase-8 in tumor necrosis factor (TNF)-alpha-induced activation of NF-kappaB. Direct targeting of caspase-8 with siRNA and antisense (AS) approaches abolished TNF-alpha-induced activation of NF-kappaB in NIH3T3, HeLa, and HEK293 cells as determined with luciferase reporter gene and cell fractionation assays.
View Article and Find Full Text PDFApoptosis repressor with CARD (ARC) possesses the ability not only to block activation of caspase 8 but to modulate caspase-independent mitochondrial events associated with cell death. However, it is not known how ARC modulates both caspase-dependent and caspase-independent cell death. Here, we report that ARC is a Ca(2+)-dependent regulator of caspase 8 and cell death.
View Article and Find Full Text PDFFAF1 has been introduced as a Fas-binding protein. However, the function of FAF1 in apoptotic execution is not established. Based on the fact that FAF1 is a Fas-binding protein, we asked if FAF1 interacted with other members of the Fas-death-inducing signaling complex (Fas-DISC) such as Fas-associated death domain protein (FADD) and caspase-8.
View Article and Find Full Text PDF