Climate change is globally affecting rainfall patterns, necessitating the improvement of drought tolerance in crops. is a relatively drought-tolerant cereal. Functional stay-green sorghum genotypes can maintain green leaf area and efficient grain filling during terminal post-flowering water deprivation, a period of ~10 weeks.
View Article and Find Full Text PDFAnalysis of ion mobility spectrometry (IMS) data has been challenging and limited the full utility of these measurements. Unlike liquid chromatography-mass spectrometry, where a plethora of tools with well-established algorithms exist, the incorporation of the additional IMS dimension requires upgrading existing computational pipelines and developing new algorithms to fully exploit the advantages of the technology. We have recently reported MZA, a new and simple mass spectrometry data structure based on the broadly supported HDF5 format and created to facilitate software development.
View Article and Find Full Text PDFLipids play essential roles in many biological processes and disease pathology, but unambiguous identification of lipids is complicated by the presence of multiple isomeric species differing by fatty acyl chain length, stereospecifically numbered (sn) position, and position/stereochemistry of double bonds. Conventional liquid chromatography-mass spectrometry (LC-MS/MS) analyses enable the determination of fatty acyl chain lengths (and in some cases sn position) and number of double bonds, but not carbon-carbon double bond positions. Ozone-induced dissociation (OzID) is a gas-phase oxidation reaction that produces characteristic fragments from lipids containing double bonds.
View Article and Find Full Text PDFModern mass spectrometry-based workflows employing hybrid instrumentation and orthogonal separations collect multidimensional data, potentially allowing deeper understanding in omics studies through adoption of artificial intelligence methods. However, the large volume of these rich spectra challenges existing data storage and access technologies, therefore precluding informatics advancements. We present MZA (pronounced ), the mass-to-charge (/) generic data storage and access tool designed to facilitate software development and artificial intelligence research in multidimensional mass spectrometry measurements.
View Article and Find Full Text PDFIon trajectory simulation in mass spectrometry systems from injection to detection is technically challenging but very important for better understanding the ion dynamics in instrument development. Here, we present SimELIT (ulator of ulerian and agrangian on rajectories), a novel ion trajectory simulation platform. SimELIT is built upon a suite of multiphysics solvers compiled into OpenFOAM (an open-source numerical solver library particularly used for computational mechanics), with a simple web-based graphical user interface (GUI) allowing users to define the details of OpenFOAM cases and run simulations.
View Article and Find Full Text PDFMetaproteomics has been increasingly utilized for high-throughput characterization of proteins in complex environments and has been demonstrated to provide insights into microbial composition and functional roles. However, significant challenges remain in metaproteomic data analysis, including creation of a sample-specific protein sequence database. A well-matched database is a requirement for successful metaproteomics analysis, and the accuracy and sensitivity of PSM identification algorithms suffer when the database is incomplete or contains extraneous sequences.
View Article and Find Full Text PDFCurrent coronavirus disease 2019 (COVID-19) vaccines effectively reduce overall morbidity and mortality and are vitally important to controlling the pandemic. Individuals who previously recovered from COVID-19 have enhanced immune responses after vaccination (hybrid immunity) compared with their naïve-vaccinated peers; however, the effects of post-vaccination breakthrough infections on humoral immune response remain to be determined. Here, we measure neutralizing antibody responses from 104 vaccinated individuals, including those with breakthrough infections, hybrid immunity, and no infection history.
View Article and Find Full Text PDFSignal digitization is a commonly overlooked part of ion mobility-mass spectrometry (IMS-MS) workflows, yet it greatly affects signal-to-noise ratio and MS resolution measurements. Here, we report on the integration of a 2 GS/s, 14-bit ADC with structures for lossless ion manipulations (SLIM-IMS-MS) and compare the performance to a commonly used 8-bit ADC. The 14-bit ADC provided a reduction in the digitized noise by a factor of ∼6, owing largely to the use of smaller bit sizes.
View Article and Find Full Text PDFBrown rot fungi release massive amounts of carbon from forest deadwood, particularly at high latitudes. These fungi degrade wood by generating small reactive oxygen species (ROS) to loosen lignocellulose, to then selectively remove carbohydrates. The ROS mechanism has long been considered the key adaptation defining brown rot wood decomposition, but recently, we found preliminary evidence that fungal glycoside hydrolases (GHs) implicated in early cell wall loosening might have been adapted to tolerate ROS stress and to synergize with ROS to loosen woody lignocellulose.
View Article and Find Full Text PDFMotivation: Ion mobility spectrometry (IMS) separations are increasingly used in conjunction with mass spectrometry (MS) for separation and characterization of ionized molecular species. Information obtained from IMS measurements includes the ion's collision cross section (CCS), which reflects its size and structure and constitutes a descriptor for distinguishing similar species in mixtures that cannot be separated using conventional approaches. Incorporating CCS into MS-based workflows can improve the specificity and confidence of molecular identification.
View Article and Find Full Text PDFPredictive biogeochemical modeling requires data-model integration that enables explicit representation of the sophisticated roles of microbial processes that transform substrates. Data from high-resolution organic matter (OM) characterization are increasingly available and can serve as a critical resource for this purpose, but their incorporation into biogeochemical models is often prohibited due to an over-simplified description of reaction networks. To fill this gap, we proposed a new concept of biogeochemical modeling-termed -that enables parameterizing OM-specific oxidative degradation pathways and reaction rates based on the thermodynamic properties of OM pools.
View Article and Find Full Text PDFIon packets introduced from gates, ion funnel traps, and other conventional ion injection mechanisms produce ion pulse widths typically around a few microseconds or less for ion mobility spectrometry (IMS)-based separations on the order of 100 milliseconds. When such ion injection techniques are coupled with ultralong path length traveling wave (TW)-based IMS separations (i.e.
View Article and Find Full Text PDFZika virus (ZIKV), an arbovirus of global concern, remodels intracellular membranes to form replication sites. How ZIKV dysregulates lipid networks to allow this, and consequences for disease, is poorly understood. Here, we perform comprehensive lipidomics to create a lipid network map during ZIKV infection.
View Article and Find Full Text PDFThe soil environment is constantly changing due to shifts in soil moisture, nutrient availability and other conditions. To contend with these changes, soil microorganisms have evolved a variety of ways to adapt to environmental perturbations, including regulation of gene expression. However, it is challenging to untangle the complex phenotypic response of the soil to environmental change, partly due to the absence of predictive modeling frameworks that can mechanistically link molecular-level changes in soil microorganisms to a community's functional phenotypes (or metaphenome).
View Article and Find Full Text PDFMicrobial communities organize into spatial patterns that are largely governed by interspecies interactions. This phenomenon is an important metric for understanding community functional dynamics, yet the use of spatial patterns for predicting microbial interactions is currently lacking. Here we propose supervised deep learning as a new tool for network inference.
View Article and Find Full Text PDFModulation of interspecies interactions by the presence of neighbor species is a key ecological factor that governs dynamics and function of microbial communities, yet the development of theoretical frameworks explicit for understanding context-dependent interactions are still nascent. In a recent study, we proposed a novel rule-based inference method termed the Minimal Interspecies Interaction Adjustment (MIIA) that predicts the reorganization of interaction networks in response to the addition of new species such that the modulation in interaction coefficients caused by additional members is minimal. While the theoretical basis of MIIA was established through the previous work by assuming the full availability of species abundance data in axenic, binary, and complex communities, its extension to actual microbial ecology can be highly constrained in cases that species have not been cultured axenically (e.
View Article and Find Full Text PDFAn intriguing aspect in microbial communities is that pairwise interactions can be influenced by neighboring species. This creates context dependencies for microbial interactions that are based on the functional composition of the community. Context dependent interactions are ecologically important and clearly present in nature, yet firmly established theoretical methods are lacking from many modern computational investigations.
View Article and Find Full Text PDFHuman tissues are known to exhibit interindividual variability, but a deeper understanding of the different factors affecting protein expression is necessary to further apply this knowledge. Our goal was to explore the proteomic variability between individuals as well as between healthy and diseased samples, and to test the efficacy of machine learning classifiers. In order to investigate whether disparate proteomics data sets may be combined, we performed a retrospective analysis of proteomics data from 9 different human tissues.
View Article and Find Full Text PDFThis report presents the results from the 2016 Association of Biomolecular Resource Facilities Proteome Informatics Research Group (iPRG) study on proteoform inference and false discovery rate (FDR) estimation from bottom-up proteomics data. For this study, 3 replicate Q Exactive Orbitrap liquid chromatography-tandom mass spectrometry datasets were generated from each of 4 samples spiked with different equimolar mixtures of small recombinant proteins selected to mimic pairs of homologous proteins. Participants were given raw data and a sequence file and asked to identify the proteins and provide estimates on the FDR at the proteoform level.
View Article and Find Full Text PDFBackground: Identifying similarities between datasets is a fundamental task in data mining and has become an integral part of modern scientific investigation. Whether the task is to identify co-expressed genes in large-scale expression surveys or to predict combinations of gene knockouts which would elicit a similar phenotype, the underlying computational task is often a multi-dimensional similarity test. As datasets continue to grow, improvements to the efficiency, sensitivity or specificity of such computation will have broad impacts as it allows scientists to more completely explore the wealth of scientific data.
View Article and Find Full Text PDF