Ce-doped TiO nanostructures (CeT) with different amounts of Ce (0.5, 0.75, 1.
View Article and Find Full Text PDFIn this study, an ultrasound-aided hydrothermal-impregnation method was used to synthesize three-dimensional (3D) urchin-like CdS-TiO nanostructures (UCTs) with variable CdS content. The photocatalytic efficiencies (for degrading limonene and toluene vapor) of UCTs synthesized using the ultrasound-aided process were greater than those of UCTs fabricated without ultrasound treatment. In addition, the photocatalytic efficiencies of ultrasound-treated UCTs were greater than those of zero-dimensional ultrasound-treated CdS-TiO particles, which, in turn, were greater than those of untreated 3D TiO.
View Article and Find Full Text PDFTwo-dimensional nanosheet structures of N-doped TiO2/WO3 composites (WO3-N-TNSs) with varying WO3 loadings were synthesized by incorporating WO3 and N sources into sonochemically prepared TiO2 nanosheets (TNSs). These nanostructures were employed as photocatalysts, and their efficacy in the decomposition of hazardous hexane vapor was investigated. The photocatalytic efficiencies of the WO3-N-TNS composites were higher than those of N-doped TNS (N-TNS), which in turn were higher than the corresponding values for un-doped TNS.
View Article and Find Full Text PDFNovel, hierarchically nanostructured, redox-mediator-free, direct Z-scheme nanocomposite photocatalysts were synthesized via a facile hydrothermal method followed by wet-impregnation. The photocatalysts had a ZnIn2S4 marigold flower/Bi2WO6 flower-like (ZIS/BW) composition, which led to superior visible-light photocatalytic efficiency with excellent stability and reusability. The hierarchical marigold flower and flower-like morphologies of ZIS and BW were confirmed by FE-SEM and TEM analyses and further revealed that formation of the hierarchical marigold flower-like ZIS structure followed the formation of nanoparticles, growth of the ZIS petals, and self-assembly of these species.
View Article and Find Full Text PDFTitania (TiO2) photocatalysts, each embedded with one of six metals (Ag, Ce, Co, Fe, Mg, and Mn), were prepared using a simplified ultrasonic process. The characteristics of the prepared metal-embedded TiO2 (metal-TiO2) were determined using transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction spectroscopy, photoluminescence emission spectroscopy, UV-visible spectroscopy, and nitrogen adsorption-desorption. Except for Co-TiO2, the metal-TiO2 photocatalysts showed improved performance for the decomposition of gaseous benzene and toluene, which are two of the most problematic indoor air pollutants that can cause a variety of adverse health symptoms, under daylight lamp irradiation.
View Article and Find Full Text PDFThis study aimed to prepare titania (TiO₂) nanotube (TNT) arrays grown on un-activated carbon fibers (UCFs), with the application of different TiO₂ loadings based on the coating-hydrothermal process, and to evaluate their photocatalytic activity for the degradation of sub-ppm levels of aromatic pollutants (benzene, toluene, ethyl benzene, and o-xylene (BTEX)) using a plug-flow photocatalytic reactor. The characteristics of the prepared photocatalysts were determined by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), transmission electron microscopy (TEM), UV-visible absorption spectroscopy (UV-Vis) and X-ray diffraction (XRD) analyses. Spectral analysis showed that the prepared photocatalysts were closely associated with the characteristics of one-dimensional nanostructured TiO₂ nanotubes for TNTUCFs and spherical shapes for TiO₂-coated UCF (TUCF).
View Article and Find Full Text PDFNanoparticle exposure assessment presents a unique challenge in the field of occupational and environmental health. With the commercialization of nanotechnology, exposure usually starts from the workplace and then spreads to environment and consumer exposure. This report discusses the current trends of nanoparticle exposure assessment, including the definition of nanotechnology relevant terms, essential physicochemical properties for nanomaterial characterization, current international activities related nanomaterial safety, and exposure assessment standard development for nanotechnology.
View Article and Find Full Text PDFTungsten oxide zirconia, sulfated zirconia and Amberlyst-15 were examined as a catalyst for a conversion of used vegetable oils (VOs) to fatty acid methyl esters (FAMEs). Among them, tungsten oxide zirconia was a promising heterogeneous catalyst for the production of biodiesel fuels from used VOs because of high activity in the conversion over 93% and no leaching WO(3) in the esterification reaction. The reaction conditions were optimized.
View Article and Find Full Text PDF