ACS Appl Mater Interfaces
January 2023
In this study, we exploited the properties of nature-inspired hierarchical structures to propose surfaces capable of on-demand directional droplet manipulation. A microline polydimethylsiloxane structure that simulated a bamboo leaf was fabricated, and silica particles were embedded onto its surface to create hierarchical structures. The as-fabricated multiscale line structures exhibited anisotropic wetting properties along the advancing direction.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2022
Directional droplet-sliding control without wetting the surface is immensely required in advanced surface engineering, including biological and chemical analyses or green technology. However, the development of robust and transparent thin sticker-type directional omniphobic films for portable usage in smart microfluidic platforms is rare. In this study, we report a novel perfluoropolyether (PFPE) directional omniphobic film (PDOF).
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2020
We report a reliable and robust method for the fabrication of bioinspired superomniphobic surfaces with precise concave-cap-shaped micropillar arrays. This method includes silicon-based conventional microelectromechanical systems (MEMS) and polymer replication processes. We have elucidated two critical cases of fabrication rules for precise micromachining of a negative-shaped bioinspired silicon master.
View Article and Find Full Text PDFNovel antireflective (AR) structures have attracted tremendous attention and been used in various applications such as solar cells, displays, wearable devices, and others. They have also stimulated the development of several other methods, including moth-eye-inspired technologies. However, the analyses of the shapes and sizes of nanostructures remain a critical issue and need to be considered in the design of effective AR surfaces.
View Article and Find Full Text PDF