Publications by authors named "Joon Hak Oh"

Helicenes exhibit promise as active layer materials for circularly polarized light (CPL) detectors due to their strong chiroptical activity. However, their practical application is limited by the complicated synthesis and loosely solid-state packing. This study introduces a chiral induction strategy towards the synthesis of helicene derivatives, chiral tetrachlorinated diperylene diimides (()-4CldiPDI or ()-4CldiPDI).

View Article and Find Full Text PDF

The development of n-type organic semiconductors (OSCs) has been lagged behind that of p-type OSCs, mainly due to the limited availability of the electron deficient π-conjugated backbones and facile electron trapping by ambient oxidants. Improving the performance of n-type OSCs through n-doping is essential for realizing p-n junction diodes and complementary circuits. Conventional vacuum deposition doping is costly and time-consuming, while solution doping risks thermal damage through necessary annealing.

View Article and Find Full Text PDF

Chiral hybrid perovskites show promise for advanced spin-resolved optoelectronics due to their excellent polarization-sensitive properties. However, chiral perovskites developed to date rely solely on the interaction between chiral organic ligand cations exhibiting point chirality and an inorganic framework, leading to a poorly ordered short-range chiral system. Here, we report a powerful method to overcome this limitation using dynamic long-range organization of chiral perovskites guided by the incorporation of chiral dopants, which induces strong interactions between chiral dopants and chiral cations.

View Article and Find Full Text PDF

Neuromorphic sensors, designed to emulate natural sensory systems, hold the promise of revolutionizing data extraction by facilitating rapid and energy-efficient analysis of extensive datasets. However, a challenge lies in accurately distinguishing specific analytes within mixtures of chemically similar compounds using existing neuromorphic chemical sensors. In this study, we present an artificial olfactory system (AOS), developed through the integration of human olfactory receptors (hORs) and artificial synapses.

View Article and Find Full Text PDF

Efficient exciton transport is essential for high-performance optoelectronics. Considerable efforts have been focused on improving the exciton mobility in organic materials. While it is feasible to improve mobility in organic systems by forming well-ordered stacks, the formation of trap states, particularly the lower-lying states referred to as excimers, remains a significant challenge to enhancing mobility.

View Article and Find Full Text PDF

Technologies that detect circularly polarized light (CPL), particularly in the UV region, have significant potential for various applications, including bioimaging and optical communication. However, a major challenge in directly sensing CPL arises from the conflicting requirements of planar structures for efficient charge transport and distorted structures for effective interaction with CPL. Here, a novel design of an axially chiral n-type organic semiconductor is presented to surmount the challenge, in which a binaphthyl group results in a high dissymmetry factor at the molecular level, while maintaining excellent electron-transporting characteristics through the naphthalene diimide group.

View Article and Find Full Text PDF

The field of organic mixed ionic-electronic conductors (OMIECs) has gained significant attention due to their ability to transport both electrons and ions, making them promising candidates for various applications. Initially focused on inorganic materials, the exploration of mixed conduction has expanded to organic materials, especially polymers, owing to their advantages such as solution processability, flexibility, and property tunability. OMIECs, particularly in the form of polymers, possess both electronic and ionic transport functionalities.

View Article and Find Full Text PDF

Chiral metamaterials have received significant attention due to their strong chiroptical interactions with electromagnetic waves of incident light. However, the fabrication of large-area, hierarchically manufactured chiral plasmonic structures with high dissymmetry factors (g-factors) over a wide spectral range remains the key barrier to practical applications. Here we report a facile yet efficient method to fabricate hierarchical chiral nanostructures over a large area (>11.

View Article and Find Full Text PDF

Control of the spin angular momentum (SAM) carried in a photon provides a technologically attractive element for next-generation quantum networks and spintronics. However, the weak optical activity and inhomogeneity of thin films from chiral molecular crystals result in high noise and uncertainty in SAM detection. Brittleness of thin molecular crystals represents a further problem for device integration and practical realization of chiroptical quantum devices.

View Article and Find Full Text PDF

Chiral organic ligand-incorporated low-dimensional metal-halide perovskites have received increasing attention for next-generation photodetectors because of the direct detection capability of circularly polarized light (CPL), which overcomes the requirement for subsidiary optical components in conventional CPL photodetectors. However, most chiral perovskites have been based on low-dimensional structures that confine chiroptical responses to the ultraviolet (UV) or short-wavelength visible region and limit photocurrent due to their wide bandgap and poor charge transport. Here, chiroptical properties of 3D Cs FA MA Pb Sn I polycrystalline films are achieved by incorporating chiral plasmonic gold nanoparticles (AuNPs) into the mixed PbSn perovskite, without sacrificing its original optoelectronic properties.

View Article and Find Full Text PDF

Two-dimensional layered transition metal dichalcogenides (TMDs) have been investigated intensively as next-generation semiconducting materials. However, conventional TMD-based devices exhibit large contact resistance at the interface between the TMD and the metal electrode because of Fermi level pinning and the Schottky barrier, which results in poor charge injection. Here, we present enhanced charge transport characteristics in molybdenum diselenide (MoSe) by means of a sequential engineering process called PESOD-2H/1T (.

View Article and Find Full Text PDF

When designing organic semiconductors, side-chain engineering is as important as modifying the conjugated backbone, which has a significant impact on molecular ordering, morphology, and thus electronic device performance. We have developed three dicyanovinyl-end-capped donor-acceptor diketopyrrolopyrrole-based n-type small molecules (C2C9CN, SiC4CN, and EH4PCN) bearing an identical length of alkyl spacer yet different end-functionalized side chains (i.e.

View Article and Find Full Text PDF

Organic neuromorphic devices and sensors that mimic the functions of chemical synapses and sensory perception in humans have received much attention for next-generation computing and integrated logic circuits. Despite recent advances, organic artificial synapses capable of detecting both neurotransmitters in liquid environments and light are not reported. Herein, inspired by hippocampal synapses, a dual-gate organic synaptic transistor platform with a photoconductive polymer semiconductor, a ferroelectric insulator of P(VDF-TrFE), and an extended-gate electrode functionalized with boronic acid is developed to simultaneously detect the neurotransmitter dopamine and light.

View Article and Find Full Text PDF
Article Synopsis
  • One-dimensional organic chiral supramolecules, particularly bay-substituted perylene diimides (PDIs), show potential for applications in chiral recognition, sensors, and optoelectronics.
  • The synthesis of three different bay-substituted PDIs was conducted, revealing that the compound ()-CN-CPDI-Ph exhibited superior electron mobility and enhanced performance in phototransistors compared to the other two.
  • Findings suggest that bay substitution improves self-assembly and optoelectronic properties by enhancing electron injectability and structural order, indicating its significance in developing advanced PDI nanomaterials.
View Article and Find Full Text PDF

Recently, studies of 2D organic layered materials with unique electronic properties have generated considerable interest in the research community. However, the development of organic materials with functional electrical transport properties is still needed. Here, a 2D fused aromatic network (FAN) structure with a C N basal plane stoichiometry is designed and synthesized, and thin films are cast from C N solution onto silicon dioxide substrates.

View Article and Find Full Text PDF

Despite great challenges, the development of new molecular structures with multiple and even conflicting characteristics are eagerly pursued for exploring advanced applications. To develop high-performance chiral organic semiconducting molecules, a distorted π-system is required for strong coupling with circularly polarized light (CPL), whereas planar π-stacking systems are necessary for high charge-carrier mobility. To address this dilemma, in this work, we introduce a skeleton merging approach through distortion of a perylene diimide (PDI) core with four fused heteroaromatics to form an ortho-π-extended PDI double-[7]heterohelicene.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers have fabricated quasi-2D chiral perylene diimide single crystals with unique shapes through self-assembly, showcasing strong circular dichroism due to their distinct molecular arrangements.
  • * After enhancing these crystals with n-doping, they achieved impressive electron mobility and effectively differentiated CPL handedness, highlighting their potential for advanced chiral optoelectronic applications.
View Article and Find Full Text PDF

Organic phototransistors (OPTs) have been widely used in biomedical sensing, optical communications, and imaging. Charge-trapping effect has been utilized as an effective strategy for enhancing their photoresponsivity by effectively decreasing the dark current. The combination of organic semiconductors (OSCs), especially chiral OSCs, with insulating polymers has rarely been carried out for optoelectronic applications.

View Article and Find Full Text PDF
Article Synopsis
  • - The study introduces a new method for creating perovskite granular wires with impressive photodetectivity, crucial for efficient optoelectronic applications.
  • - The self-assembly process is driven by variations in surface interaction energies, leading to unique properties that enhance photodetecting capabilities, such as low dark current and band-edge modulation.
  • - Flexible photodetector arrays made from these wires demonstrate high detectivity and responsiveness, showcasing the potential for further advancements in perovskite-based optoelectronic systems.
View Article and Find Full Text PDF

A family of copolymers (P(NDIOD-T2F)) based on naphthalenediimide (NDI) and 2,2'-bithiophene (T2) units with different amounts of 3,3'-difluoro-2,2'-bithiophene (T2F) decoration were synthesized, characterized, and used in n-type organic field-effect transistors (OFETs). With increasing T2F content in the backbone, we observe increased melting and crystallization transitions, blue-shifted absorptions, and deeper-lying highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO) levels, together with improved hydrophobicity. The highest electron mobility of 4.

View Article and Find Full Text PDF

Hybrid photovoltaics (HPVs) incorporating both organic and inorganic semiconducting materials have attracted much attention as next-generation photovoltaics because of their advantage of combining both materials. The hybridization of ZnO nanowires (NWs) and organic semiconductors is expected to be a suitable approach to overcome the limited exciton diffusion length and low electron mobility associated with current organic photovoltaics. The use of ZnO NWs allows researchers to tune nanoscale dimensions more precisely and to achieve rod-to-rod spacing below 10 nm.

View Article and Find Full Text PDF

Multifunctional hydrogels with properties including transparency, flexibility, self-healing, and high electrical conductivity have attracted great attention for their potential application to soft electronic devices. The presence of an ionic species can make hydrogels conductive in nature. However, the conductivity of hydrogels is often influenced by temperature, due to the change of the internal nano/microscopic structure when temperature reaches the sol-gel phase transition temperature.

View Article and Find Full Text PDF

Chiral self-sorting has great potential for constructing new complex structures and determining chirality-dependent properties in multicomponent mixtures. However, it is still of great challenge to achieve high fidelity chiral self-discrimination. Besides, the researches on the coordination polymers or metal-organic frameworks for micro/nanooptoelectronics are still rare due to their low conductivity and difficulty in developing a rapid and simple scale-up synthetic method.

View Article and Find Full Text PDF

Molecules capable of producing zero-field circularly polarized phosphorescence (CPP) are highly valuable for chiroptoelectronic applications that rely on triplet exciton. However, the paucity of tractable molecular design rules for obtaining CPP emission has inhibited full utilization. We report amplification of CPP by the formation of helical co-assemblies consisting of achiral square planar cycloplatinated complexes and small fractions of homochiral cycloplatinated complexes.

View Article and Find Full Text PDF

Bioelectronics for healthcare that monitor the health information on users in real time have stepped into the limelight as crucial electronic devices for the future due to the increased demand for "point-of-care" testing, which is defined as medical diagnostic testing at the time and place of patient care. In contrast to traditional diagnostic testing, which is generally conducted at medical institutions with diagnostic instruments and requires a long time for specimen analysis, point-of-care testing can be accomplished personally at the bedside, and health information on users can be monitored in real time. Advances in materials science and device technology have enabled next-generation electronics, including flexible, stretchable, and biocompatible electronic devices, bringing the commercialization of personalized healthcare devices increasingly within reach, e.

View Article and Find Full Text PDF