Publications by authors named "Joohyun Shin"

Introduction: Obesity and related metabolic issues are a growing global health concern. Recently, the discovery of new probiotics with anti-obesity properties has gained interest.

Methods: In this study, four strains were isolated from healthy human feces and evaluated on a high-fat diet-induced mouse model for 12 weeks.

View Article and Find Full Text PDF

Muscular atrophy is a muscle disease in which muscle mass and strength decrease due to aging, injury, metabolic disorders, or chronic conditions. Proteins in muscle tissue are degraded by the ubiquitin-proteasome pathway, and atrophy accelerates this pathway. and strains are effective agents against metabolic and inflammatory diseases in next-generation probiotic research.

View Article and Find Full Text PDF

Atopic dermatitis (AD) is a common inflammatory skin disease, and its pathogenesis is closely associated with microbial homeostasis in the gut, namely the gut-skin axis. Particularly, recent metagenomics studies revealed that the abundance of two major bacterial species in the gut, Faecalibacterium prausnitzii and Akkermansia muciniphila, may play a critical role in the pathogenesis of AD, but the effect of these species in AD has not yet been elucidated. To evaluate the potential beneficial effect of F.

View Article and Find Full Text PDF

() is a promising probiotic candidate owing to its health-promoting properties. A previous study reported that the pasteurized form of strains isolated from human stool samples had a beneficial impact on high-fat diet-induced obese mice. On the other hand, the differences in the probiotic effects between live and pasteurized on the metabolism and immune system of the host are still inconclusive.

View Article and Find Full Text PDF

Pain and mood disorder frequently coexist. Yet, for Asian Americans (AAs), scant information about pain and mood disorder is available. Our aims were to compare (1) the rates of pain and mood disorders and (2) the magnitude of associations between pain and mood disorders between AAs and European Americans (EAs), and across different Asian subgroups.

View Article and Find Full Text PDF

The identification of new probiotics with anti-obesity properties has attracted considerable interest. In the present study, the anti-obesity activities of () strains isolated from human stool samples and their relationship with the gut microbiota were evaluated using a high fat-diet (HFD)-fed mice model. Three strains of were chosen from 27 isolates selected based on their anti-lipogenic activity in 3T3-L1 cells.

View Article and Find Full Text PDF

Human bone marrow‑derived mesenchymal stem cells (hMSCs) are a desirable cell source for cell‑based therapy to treat nervous system injuries due to their ability to differentiate into specific cell types. In addition to their multipotency, hMSCs render the tissue microenvironment more favorable for tissue repair by secreting various growth factors. Our previous study demonstrated that hMSCs secrete several growth factors, including several insulin‑like growth factor binding proteins (IGFBPs).

View Article and Find Full Text PDF

Purpose: Obesity is a major public health concern. Despite its multi-factorial etiology, alterations in intestinal microbiota and the immune system are frequently observed. We investigated the effect of Duolac Gold (DG), a probiotic formulation containing 2 Lactobacillus strains (L.

View Article and Find Full Text PDF

A nanopillar-patterned Si substrate was fabricated by photolithography, and its potential as an anode material for Li ion secondary batteries was investigated. The Si nanopillar electrode showed a capacity of ∼3000 mAh g during 100 charging/discharging cycles, with 98.3% capacity retention, and it was revealed that the nanopillars underwent delithiation via a process similar to shape-memory behavior.

View Article and Find Full Text PDF

Background: Atopic dermatitis (AD) is characterized by chronic inflammation of the skin. AD develops mainly in infants and young children. It induces skin disorders and signals the initiation of the allergic march including allergic asthma and rhinitis.

View Article and Find Full Text PDF

Human mesenchymal stem cells (hMSCs) have great therapeutic potential due to their high plasticity, immune privileged status and ease of preparation, as well as a lack of ethical barriers to their use. However, their ultimate usefulness is limited by cellular senescence occurring secondary to increased cellular levels of reactive oxygen species (ROS) during their propagation in culture. The underlying molecular mechanisms responsible for this process in hMSCs remain unclear.

View Article and Find Full Text PDF

Cell proliferation is tightly controlled by the cell-cycle regulatory proteins, primarily by cyclins and cyclin-dependent kinases (CDKs) in the G1 phase. The ankyrin repeat-rich membrane spanning (ARMS) scaffold protein, also known as kinase D-interacting substrate of 220 kDa (Kidins 220), has been previously identified as a prominent downstream target of neurotrophin and ephrin receptors. Many studies have reported that ARMS/Kidins220 acts as a major signaling platform in organizing the signaling complex to regulate various cellular responses in the nervous and vascular systems.

View Article and Find Full Text PDF

Ethyl pyruvate (EP), a simple aliphatic ester of pyruvic acid, has been shown to have antiinflammatory effects and to confer protective effects in various pathological conditions. Recently, a number of studies have reported EP inhibits high mobility group box 1 (HMGB1) secretion and suggest this might contribute to its antiinflammatory effect. Since EP is used in a calcium-containing balanced salt solution (Ringer solution), we wondered if EP directly chelates Ca(2+) and if it is related to the EP-mediated suppression of HMGB1 release.

View Article and Find Full Text PDF

Ethyl pyruvate (EP) has been shown to have anti-inflammatory effects and confer protective effects in various pathological conditions. For example, EP inhibits secretion of high mobility group box 1 (HMGB1), which is known to be released from activated or dying cells and aggravate inflammatory pathways. In the present study, we investigated whether EP reduces HMGB1 phosphorylation and release in ischemic brain and in cultured microglia.

View Article and Find Full Text PDF

Ethyl pyruvate (EP), a simple ester of pyruvic acid, has been shown to exert robust neuroprotection in various neuropathological conditions, such as, cerebral ischemia and KA-induced seizure animal models. The neuroprotective effect of EP is attributable to the anti-inflammatory, anti-oxidative, and anti-apoptotic effects. In the present study, we investigated convergence of anti-inflammatory and anti-oxidative functions of EP and present a novel molecular mechanism underlying anti-inflammatory effects of EP, which is conveyed by p300, a transcriptional co-activator for both Nuclear factor E2-related factor 2 (Nrf2) and p65.

View Article and Find Full Text PDF

High mobility group box 1 (HMGB1) is an endogenous danger signal molecule. In a previous report, we showed that HMGB1 is massively released during NMDA-induced acute damaging process in the postischemic brain and triggers inflammatory processes and induces neuronal apoptosis. We have also reported a robust neuroprotection of intranasally delivered HMGB1 siRNA in the postischemic rat brain (middle cerebral artery occlusion (MCAO), 60 min).

View Article and Find Full Text PDF

Stress is a potent risk factor for depression, yet the underlying mechanism is not clearly understood. In the present study, we explored the mechanism of development and maintenance of depression in a stress-induced animal model. Mice restrained for 2 h daily for 14 d showed distinct depressive behavior, and the altered behavior persisted for >3 months in the absence of intervention.

View Article and Find Full Text PDF

Ethyl pyruvate (EP), a simple ester of pyruvic acid, has been shown to act as an anti-inflammatory molecule under various pathological conditions, such as, during cerebral ischemia and sepsis in animal models. Here, the authors investigated the novel molecular mechanism underlying the anti-oxidative effect of EP in primary astrocyte cultures, particularly with respect to nuclear factor E2-related factor 2 (Nrf2) activation and hemeoxygenase 1 (HO-1) induction. EP was found to induce Nrf2 translocation and the inductions of various genes downstream of Nrf2 and these resulted in the amelioration of the oxidative damage of H(2)O(2).

View Article and Find Full Text PDF

High mobility group box 1 (HMGB1) is an endogenous danger signal molecule. In a previous report, we showed that HMGB1 is massively released during NMDA-induced acute damaging process in the postischemic brain and triggers inflammatory processes, like microglial activation. siRNA-mediated HMGB1 knockdown markedly reduced infarct volumes, confirming the crucial role played by HMGB1 in the postischemic brain.

View Article and Find Full Text PDF

Noninvasive intranasal drug administration has been noted to allow direct delivery of drugs to the brain. In the present study, the therapeutic efficacy of intranasal small interfering RNA (siRNA) delivery was investigated in the postischemic rat brain. Fluorescein isothiocyanate (FITC)-labeled control siRNA was delivered intranasally in normal adult rats using e-PAM-R, a biodegradable PAMAM dendrimer, as gene carrier.

View Article and Find Full Text PDF

The activation of p38 mitogen-activated protein kinases (MAPKs) has been implicated in many cellular processes, such as, inflammation, cell death, and survival. In mammals, four distinct genes encode the four known members of p38 MAPKs, p38α, p38β, p38γ, and p38δ. Despite the fact that p38α and p38β MAPKs share over 75% homology sequences, they have distinct, perhaps even opposite roles under stress conditions.

View Article and Find Full Text PDF

High mobility group box 1 (HMGB1) was originally identified as ubiquitously expressed nonhistone DNA-binding protein, but recently, it was found to act as an endogenous danger molecule, which signals danger and traumatic cell death. Previously, the authors showed that HMGB1 is massively released immediately after an ischemic insult and that it subsequently activates microglia and induces inflammation in the postischemic brain. Here, we showed the endogenous danger molecule-like function of HMGB1 in primary cortical cultures.

View Article and Find Full Text PDF

Cerebral ischemia leads to brain injury via a complex series of pathophysiological events. Therefore, multidrug treatments or multitargeting drug treatments are attractive options in efficiently limiting brain damage. Here, we report a novel multifunctional compound oxopropanoyloxy benzoic acid (OBA-09), a simple ester of pyruvate and salicylic acid.

View Article and Find Full Text PDF

High mobility group box 1 (HMGB1) is a family of endogenous molecules that is released by necrotic cells and causes neuronal damages by triggering inflammatory processes. In the cerebral ischemic brain, sustained and regulated suppression of HMGB1 has been emerged as a therapeutic means to grant neuroprotection. HMGB1 consists of two HMG boxes (A and B) and an acidic C-terminal tail, and the A box peptide antagonistically competes with HMGB1 for its receptors.

View Article and Find Full Text PDF