Ageing is associated with a decline in the number and fitness of adult stem cells. Ageing-associated loss of stemness is posited to suppress tumorigenesis, but this hypothesis has not been tested in vivo. Here we use physiologically aged autochthonous genetically engineered mouse models and primary cells to demonstrate that ageing suppresses lung cancer initiation and progression by degrading the stemness of the alveolar cell of origin.
View Article and Find Full Text PDFInflammation plays a crucial role in tissue injury, repair and disease, orchestrating a complex interplay of immune responses and cellular processes. Recent studies have uncovered the intricate connection between inflammation and stem cell dynamics, shedding light on the central role of stem cells in tissue regeneration. This Review highlights the significance of inflammation in shaping epithelial stem cell dynamics and its implications for tissue repair, regeneration and aging.
View Article and Find Full Text PDFTransformed lung organoids have extensive applications in lung cancer modeling and drug screening. Traditional two-dimensional (2D) cultures fail to propagate a large subpopulation of murine primary tumors in vitro. However, three-dimensional (3D) air-liquid interface (ALI) cultures, which are employed to grow normal lung organoids, can be used to efficiently culture cancerous lung tumor cells.
View Article and Find Full Text PDFThree-dimensional (3D) organoid cultures retain self-renewing stem cells that differentiate into multiple cell types that display spatial organization and functional key features, providing a highly physiological relevant system. Here we describe a strategy for the generation of 3D murine lung organoids derived from freshly isolated primary tracheal and distal lung epithelial stem cells. Isolated tracheas are subjected to enzymatic digestion to release the epithelial layer that is then dissociated into a single cell suspension for organoid culture.
View Article and Find Full Text PDFAging is associated with a decline in the number and fitness of adult stem cells . Aging-associated loss of stemness is posited to suppress tumorigenesis , but this hypothesis has not been tested . Here, using physiologically aged autochthonous genetically engineered mouse models and primary cells , we demonstrate aging suppresses lung cancer initiation and progression by degrading stemness of the alveolar cell of origin.
View Article and Find Full Text PDFA key step for metastatic outgrowth involves the generation of a deeply altered microenvironment (niche) that supports the malignant behavior of cancer cells. The complexity of the metastatic niche has posed a significant challenge in elucidating the underlying programs driving its origin. Here, by focusing on early stages of breast cancer metastasis to the lung in mice, we describe a cancer-dependent chromatin remodeling and activation of developmental programs in alveolar type 2 (AT2) cells within the niche.
View Article and Find Full Text PDFImage-based lineage tracing enables tissue turnover kinetics and lineage potentials of different adult cell populations to be investigated. Previously, we reported a genetic mouse model system, Red2Onco, which ectopically expressed mutated oncogenes together with red fluorescent proteins (RFP). This system enabled the expansion kinetics and neighboring effects of oncogenic clones to be dissected.
View Article and Find Full Text PDFThe comprehensive genomic impact of ionizing radiation (IR), a carcinogen, on healthy somatic cells remains unclear. Using large-scale whole-genome sequencing (WGS) of clones expanded from irradiated murine and human single cells, we revealed that IR induces a characteristic spectrum of short insertions or deletions (indels) and structural variations (SVs), including balanced inversions, translocations, composite SVs (deletion-insertion, deletion-inversion, and deletion-translocation composites), and complex genomic rearrangements (CGRs), including chromoplexy, chromothripsis, and SV by breakage-fusion-bridge cycles. Our findings suggest that 1 Gy IR exposure causes an average of 2.
View Article and Find Full Text PDFThere is a significant gap between our mechanistic understanding of lung injury repair, thought to be a lengthy process, and observational studies which indicate it is extremely rapid. In this issue, Guild et al. (https://doi.
View Article and Find Full Text PDFNat Genet
October 2023
Alveolar type 2 (AT2) cells maintain lung health by acting as stem cells and producing pulmonary surfactant. AT2 dysfunction underlies many lung diseases including interstitial lung disease (ILD), in which some inherited forms result from mislocalisation of surfactant protein C (SFTPC) variants. Disease modelling and dissection of mechanisms remains challenging due to complexities in deriving and maintaining AT2 cells Here, we describe the development of expandable adult AT2-like organoids derived from human fetal lung which are phenotypically stable, can differentiate into AT1-like cells and are genetically manipulable.
View Article and Find Full Text PDFWe present an in-depth single-cell atlas of in vitro multiculture systems on human primary airway epithelium derived from normal and diseased lungs of 27 individual donors. Our large-scale single-cell profiling identified new cell states and differentiation trajectories of rare airway epithelial cell types in human distal lungs. By integrating single-cell datasets of human lung tissues, we discovered immune-primed subsets enriched in lungs and organoids derived from patients with chronic respiratory disease.
View Article and Find Full Text PDFNat Genet
March 2023
In this study, a noncontact fabric loop sensor based on magnetic-field-induced conductivity, which can simultaneously detect cardiac activity and respiration signals, was developed and the effects of the sensor's shape and measurement position on the sensing performance were analyzed. Fifteen male subjects in their twenties wore sleeveless shirts equipped with various types of fabric loop sensors (spiky, extrusion, and spiral), and the cardiac activity and respiratory signals were measured twice at positions P2, P4, and P6. The measurements were verified by comparing them against the reference electrocardiogram (ECG) and respiratory signals measured using BIOPAC (MP150, ECG100B, RSP100C).
View Article and Find Full Text PDFPreventing SARS-CoV-2 infection by modulating viral host receptors, such as angiotensin-converting enzyme 2 (ACE2), could represent a new chemoprophylactic approach for COVID-19 that complements vaccination. However, the mechanisms that control the expression of ACE2 remain unclear. Here we show that the farnesoid X receptor (FXR) is a direct regulator of ACE2 transcription in several tissues affected by COVID-19, including the gastrointestinal and respiratory systems.
View Article and Find Full Text PDFCurr Opin Genet Dev
August 2022
Ex situ experimental models have become a main stay in pulmonary research. Organoids and explant systems have uncovered novel stem cell subsets, served as disease models, delineated cell fate transitions, and aided high throughput pre-clinical drug screening. Integration of gene-editing and bioengineering approaches have further generated novel avenues for regenerative medicine and transplantation strategies.
View Article and Find Full Text PDFTissue homeostasis requires lineage fidelity of stem cells. Dysregulation of cell fate specification and differentiation leads to various diseases, yet the cellular and molecular mechanisms governing these processes remain elusive. We demonstrate that YAP/TAZ activation reprograms airway secretory cells, which subsequently lose their cellular identity and acquire squamous alveolar type 1 (AT1) fate in the lung.
View Article and Find Full Text PDFWhile the acquisition of cellular plasticity in adult stem cells is essential for rapid regeneration after tissue injury, little is known about the underlying mechanisms governing this process. Our data reveal the coordination of airway progenitor differentiation plasticity by inflammatory signals during alveolar regeneration. Following damage, interleukin-1β (IL-1β) signalling-dependent modulation of Jag1 and Jag2 expression in ciliated cells results in the inhibition of Notch signalling in secretory cells, which drives the reprogramming and acquisition of differentiation plasticity.
View Article and Find Full Text PDFInteractions between tumour cells and the surrounding microenvironment contribute to tumour progression, metastasis and recurrence. Although mosaic analyses in Drosophila have advanced our understanding of such interactions, it has been difficult to engineer parallel approaches in vertebrates. Here we present an oncogene-associated, multicolour reporter mouse model-the Red2Onco system-that allows differential tracing of mutant and wild-type cells in the same tissue.
View Article and Find Full Text PDFEpithelial, stem-cell derived organoids are ideal building blocks for tissue engineering, however, scalable and shape-controlled bio-assembly of epithelial organoids into larger and anatomical structures is yet to be achieved. Here, a robust organoid engineering approach, Multi-Organoid Patterning and Fusion (MOrPF), is presented to assemble individual airway organoids of different sizes into upscaled, scaffold-free airway tubes with predefined shapes. Multi-Organoid Aggregates (MOAs) undergo accelerated fusion in a matrix-depleted, free-floating environment, possess a continuous lumen, and maintain prescribed shapes without an exogenous scaffold interface.
View Article and Find Full Text PDFDespite recent research on joint motion measurement to monitor human body movement, current measurement techniques and tools have significant limitations, including requiring large space for measurement and causing discomfort in test subjects wearing motion sensors. Our study aims, first, to develop carbon nanotube (CNT)-based textile joint motion sensors. Second, ours study aims to identify the most suitable CNT-based sensor structure and attachment method for use on a wearable platform during general exercise speeds.
View Article and Find Full Text PDFJ Korean Phys Soc
February 2021
Herpes simplex virus-1 (HSV-1) is an enveloped dsDNA virus, infecting ~ 67% of humans. Here, we present the essential components of the HSV-1, focusing on stunning symmetries on the capsid. However, little is known about how the symmetries are involved dynamically in the self-assembly process.
View Article and Find Full Text PDFSensors (Basel)
February 2021
In this study, a strain gauge sensor based on a change of contact or network structure between conductive materials was implemented using the handle-machine embroidery technique, and the variables (embroidery shape, embroidery distance, embroidery size, and implementation location) affecting its performance were studied. As a result of Experiment I on the structure of embroidery suitable for joint motion monitoring, the embroidery distance, rather than the embroidery size, was found to have a significant effect on the electric resistance changes caused by elongation. Based on the results of Experiment I, two types of zigzag embroideries, four types of embroideries with few contact points, and two types of embroideries with more contact points (all with short distances (2.
View Article and Find Full Text PDFSensitivity and reliability are essential factors for the practical implementation of a wearable sensor. This study explores the possibility of using a hybrid high-resolution Bragg grating sensor for achieving a fast response to dynamic, continuous motion and Bragg signal pattern monitoring measurement. The wavelength shift pattern for real-time monitoring in picometer units was derived by using femtosecond laser Bragg grating processing on an optical wave path with long-period grating.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the cause of a present pandemic, infects human lung alveolar type 2 (hAT2) cells. Characterizing pathogenesis is crucial for developing vaccines and therapeutics. However, the lack of models mirroring the cellular physiology and pathology of hAT2 cells limits the study.
View Article and Find Full Text PDF