Publications by authors named "Jooha Park"

Rechargeable calcium batteries have attracted increasing attention as promising multivalent ion battery systems due to the high abundance of calcium. However, the development has been hampered by the lack of suitable cathodes to accommodate the large and divalent Ca ions at a high redox potential with sufficiently fast ionic conduction. Herein, we report a new intercalation host which presents 500 cycles with a capacity retention of 90% and a remarkable power capability at ~3.

View Article and Find Full Text PDF

Reversible intercalation of guest ions in graphite is the key feature utilized in modern battery technology. In particular, the capability of Li-ion insertion into graphite enabled the successful launch of commercial Li-ion batteries 30 years ago. On the road to explore graphite as a universal anode for post Li-ion batteries, the conventional intercalation chemistry is being revisited, and recent findings indicate that an alternative intercalation chemistry involving the insertion of solvated ions, designated as co-intercalation, could overcome some of the obstacles presented by the conventional intercalation of graphite.

View Article and Find Full Text PDF

The electrochemical properties and performances of lithium-ion batteries are primarily governed by their constituent electrode materials, whose intrinsic thermodynamic and kinetic properties are understood as the determining factor. As a part of complementing the intrinsic material properties, the strategy of nanosizing has been widely applied to electrodes to improve battery performance. It has been revealed that this not only improves the kinetics of the electrode materials but is also capable of regulating their thermodynamic properties, taking advantage of nanoscale phenomena regarding the changes in redox potential, solid-state solubility of the intercalation compounds, and reaction paths.

View Article and Find Full Text PDF

Calcium-ion batteries (CIBs) are considered to be promising next-generation energy storage systems because of the natural abundance of calcium and the multivalent calcium ions with low redox potential close to that of lithium. However, the practical realization of high-energy and high-power CIBs is elusive owing to the lack of suitable electrodes and the sluggish diffusion of calcium ions in most intercalation hosts. Herein, it is demonstrated that calcium-ion intercalation can be remarkably fast and reversible in natural graphite, constituting the first step toward the realization of high-power calcium electrodes.

View Article and Find Full Text PDF