Although the conditional gene knockout (KO) is a better choice for observing its phenotype in a specific cell, tissue, and/or organ, the simple null gene KO could nevertheless be attempted initially to scan its overall phenotypes at the level of the whole-body system, especially for a new gene such as . Therefore, with a hope to glean phenotypic clues for at the whole-body system, we attempted to generate its null KO mice. Contrary to our original desire, homozygous null KO mice were not born.
View Article and Find Full Text PDFCrlz-1 was expressed along with Wnt3a in the rapidly proliferating centroblasts within the dark zone of germinal center (GC) during humoral immune responses. Significantly, Crlz-1 relayed a Wnt/β-catenin signal to the expression of Bcl-6, the master regulator of centroblasts, by mobilizing the cytoplasmic CBFβ into the nucleus to allow Runx/CBFβ heterodimerization and its subsequent binding to the promoter. The knockdown of Crlz-1 or β-catenin, as well as inhibition of Wnt signaling in the centroblasts, led to the decreased expression of Bcl-6 and, thereby, the altered expression of its various target genes, resulting in their diminished proliferation.
View Article and Find Full Text PDFThe proliferation of pre-B cells is known to further increase the clonal diversity of B cells at the stage of pre-B cells by allowing the same rearranged heavy chains to combine with differently rearranged light chains in a subsequent developmental stage. Crlz-1 (charged amino acid-rich leucine zipper-1) was found to control this proliferation of pre-B cells by working as a Wnt (wingless-related mouse mammary tumor virus integration site) target gene in these cells. Mechanistically, Crlz-1 protein functioned by mobilizing cytoplasmic CBFβ (core binding factor β) into the nucleus to allow Runx (runt-related transcription factor)/CBFβ heterodimerization.
View Article and Find Full Text PDF