The precise control of sensitivity to external stimuli, for example, impact, friction, and thermal energy, has been emphasized for highly energetic materials, including RDX and HMX. Such sensitivities could be controlled by adjusting the surface area or (in)organic additives; however, increased stability leads to a decrease in the explosives' performance. Here, high-energy-density molecules hosted in inverse opal-like porous carbon (IOC) nanocomposites demonstrate the mechanical stabilization and desensitization of RDX and HMX inside the carbon nanostructure using host-guest chemistry techniques.
View Article and Find Full Text PDF