Publications by authors named "Joo Ho Yun"

Artificial antireflective nanostructured surfaces, inspired by moth eyes, effectively reduce optical losses at interfaces, offering significant advantages in enhancing optical performance in various optoelectronic applications, including solar cells, light-emitting diodes, and cameras. However, their limited flexibility and low surface hardness constrain their broader use. In this study, we introduce a universal antireflective film by integrating nanostructures on both sides of a thin polycarbonate film.

View Article and Find Full Text PDF

Severe stress endangers outdoor workers who are in an exceedingly hot workplace. Although recent studies quantify stress levels on the human skin, they still rely on rigid, bulky sensor modules, causing data loss from motion artifacts and limited field-deployability for continuous health monitoring. Moreover, no prior work shows a wearable device that can endure heat exposure while showing continuous monitoring of a subject's stress under realistic working environments.

View Article and Find Full Text PDF

Reconfigurability of a device that allows tuning of its shape and stiffness is utilized for personal electronics to provide an optimal mechanical interface for an intended purpose. Recent approaches in developing such transformative electronic systems (TES) involved the use of gallium liquid metal, which can change its liquid-solid phase by temperature to facilitate stiffness control of the device. However, the current design cannot withstand excessive heat during outdoor applications, leading to undesired softening of the device when the rigid mode of operation is favored.

View Article and Find Full Text PDF

With growing interest in healthcare, wearable healthcare devices have been developed and researched. In particular, near-field communication (NFC) based wearable devices have been actively studied for device miniaturization. Herein, this article proposes a low-cost and convenient healthcare system, which can monitor heart rate and temperature using a wireless/battery-free sensor and the customized smartphone application.

View Article and Find Full Text PDF