Publications by authors named "Joo H Shin"

Article Synopsis
  • Excessive alcohol consumption is a major preventable cause of death, prompting a study on the genetic factors related to alcohol use disorder (AUD) using brain tissues from deceased individuals with and without AUD.! -
  • Researchers analyzed gene expression in two brain regions (nucleus accumbens and dorsolateral prefrontal cortex) and found 476 differentially expressed genes (DEGs) linked to AUD, with some connected to problematic drinking habits.! -
  • The study also identified potential drug compounds that could target these DEGs, suggesting opportunities for repurposing existing medications to better treat AUD.!
View Article and Find Full Text PDF

The omnigenic model posits that genetic risk for traits with complex heritability involves cumulative effects of peripheral genes on mechanistic "core genes," suggesting that in a network of genes, those closer to clusters including core genes should have higher GWAS signals. In gene co-expression networks, we confirmed that GWAS signals accumulate in genes more connected to risk-enriched gene clusters, highlighting across-network risk convergence. This was strongest in adult psychiatric disorders, especially schizophrenia (SCZ), spanning 70% of network genes, suggestive of super-polygenic architecture.

View Article and Find Full Text PDF

The molecular pathology of stress-related disorders remains elusive. Our brain multiregion, multiomic study of posttraumatic stress disorder (PTSD) and major depressive disorder (MDD) included the central nucleus of the amygdala, hippocampal dentate gyrus, and medial prefrontal cortex (mPFC). Genes and exons within the mPFC carried most disease signals replicated across two independent cohorts.

View Article and Find Full Text PDF

Wireless modules that provide telecommunications and power-harvesting capabilities enabled by radio-frequency (RF) electronics are vital components of skin-interfaced stretchable electronics. However, recent studies on stretchable RF components have demonstrated that substantial changes in electrical properties, such as a shift in the antenna resonance frequency, occur even under relatively low elastic strains. Such changes lead directly to greatly reduced wireless signal strength or power-transfer efficiency in stretchable systems, particularly in physically dynamic environments such as the surface of the skin.

View Article and Find Full Text PDF
Article Synopsis
  • Ancestral differences in genomic variation influence gene expression, with most studies focusing on European samples or adjusting for ancestry, rather than specifically examining it.
  • This study explored how genetic ancestry impacts gene expression and DNA methylation in brain tissue from admixed Black American individuals, revealing ancestry-related genes primarily involved in immune response and vascular tissue rather than neurons.
  • The identified ancestry-associated differentially expressed genes (DEGs) contribute to heritability for various conditions like ischemic stroke, Parkinson's, and Alzheimer's, highlighting significant differences in gene expression based on genetic ancestry and its implications for brain-related illnesses.
View Article and Find Full Text PDF

When somatic cells acquire complex karyotypes, they often are removed by the immune system. Mutant somatic cells that evade immune surveillance can lead to cancer. Neurons with complex karyotypes arise during neurotypical brain development, but neurons are almost never the origin of brain cancers.

View Article and Find Full Text PDF

Schizophrenia is a complex neuropsychiatric disorder with sexually dimorphic features, including differential symptomatology, drug responsiveness, and male incidence rate. Prior large-scale transcriptome analyses for sex differences in schizophrenia have focused on the prefrontal cortex. Analyzing BrainSeq Consortium data (caudate nucleus: n = 399, dorsolateral prefrontal cortex: n = 377, and hippocampus: n = 394), we identified 831 unique genes that exhibit sex differences across brain regions, enriched for immune-related pathways.

View Article and Find Full Text PDF

The polygenic architecture of schizophrenia implicates several molecular pathways involved in synaptic function. However, it is unclear how polygenic risk funnels through these pathways to translate into syndromic illness. Using tensor decomposition, we analyze gene co-expression in the caudate nucleus, hippocampus, and dorsolateral prefrontal cortex of post-mortem brain samples from 358 individuals.

View Article and Find Full Text PDF

We explored the genomic events underlying central neurocytoma (CN), a rare neoplasm of the central nervous system, via multiomics approaches, including whole-exome sequencing, bulk and single-nuclei RNA sequencing, and methylation sequencing. We identified FGFR3 hypomethylation leading to FGFR3 overexpression as a major event in the ontogeny of CN that affects crucial downstream events, such as aberrant PI3K-AKT activity and neuronal development pathways. Furthermore, we found similarities between CN and radial glial cells based on analyses of gene markers and CN tumor cells and postulate that CN tumorigenesis is due to dysregulation of radial glial cell differentiation into neurons.

View Article and Find Full Text PDF

Electrophysiology, exploring vital electrical phenomena in living organisms, anticipates broader integration into daily life through wearable devices and epidermal electrodes. However, addressing the challenges of the electrode durability and motion artifacts is essential to enable continuous and long-term biopotential signal monitoring, presenting a hurdle for its seamless implementation in daily life. To address these challenges, an ultrathin polymeric conductive adhesive, poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate)/polyvinyl alcohol/d-sorbitol (PPd) electrode with enhanced adhesion, stretchability, and skin conformability, is presented.

View Article and Find Full Text PDF
Article Synopsis
  • Primary human trophoblast stem cells (TSCs) and those derived from human pluripotent stem cells (hPSCs) can be modeled in the lab, but how hPSCs differentiate into TSCs is not well understood.
  • This study shows that a specific primed pluripotent state can produce TSCs by activating certain pathways (like EGF and WNT) and inhibiting others (like TGFβ and ROCK), all without adding BMP4, referred to as the TS condition.
  • The researchers found that the TSCs generated under TS conditions can proliferate extensively and closely resemble first-trimester placental cells, suggesting that primed hPSCs can differentiate into TSCs through various
View Article and Find Full Text PDF

The lateral septum (LS), a GABAergic structure located in the basal forebrain, is implicated in social behavior, learning, and memory. We previously demonstrated that expression of tropomyosin kinase receptor B (TrkB) in LS neurons is required for social novelty recognition. To better understand molecular mechanisms by which TrkB signaling controls behavior, we locally knocked down TrkB in LS and used bulk RNA-sequencing to identify changes in gene expression downstream of TrkB.

View Article and Find Full Text PDF

Somatic mosaicism is defined as an occurrence of two or more populations of cells having genomic sequences differing at given loci in an individual who is derived from a single zygote. It is a characteristic of multicellular organisms that plays a crucial role in normal development and disease. To study the nature and extent of somatic mosaicism in autism spectrum disorder, bipolar disorder, focal cortical dysplasia, schizophrenia, and Tourette syndrome, a multi-institutional consortium called the Brain Somatic Mosaicism Network (BSMN) was formed through the National Institute of Mental Health (NIMH).

View Article and Find Full Text PDF

The effect of schizophrenia (SCZ) genetic risk on gene expression in brain remains elusive. A popular approach to this problem has been the application of gene co-expression network algorithms (e.g.

View Article and Find Full Text PDF

Schizophrenia (SCZ) is characterized by a polygenic risk architecture implicating diverse molecular pathways important for synaptic function. However, how polygenic risk funnels through these pathways to translate into syndromic illness is unanswered. To evaluate biologically meaningful pathways of risk, we used tensor decomposition to characterize gene co-expression in post-mortem brain (of neurotypicals: N=154; patients with SCZ: N=84; and GTEX samples N=120) from caudate nucleus (CN), hippocampus (HP), and dorsolateral prefrontal cortex (DLPFC).

View Article and Find Full Text PDF

The lateral septum (LS), a GABAergic structure located in the basal forebrain, is implicated in social behavior, learning and memory. We previously demonstrated that expression of tropomyosin kinase receptor B (TrkB) in LS neurons is required for social novelty recognition. To better understand molecular mechanisms by which TrkB signaling controls behavior, we locally knocked down TrkB in LS and used bulk RNA-sequencing to identify changes in gene expression downstream of TrkB.

View Article and Find Full Text PDF

Schizophrenia is a neurodevelopmental brain disorder whose genetic risk is associated with shifting clinical phenomena across the life span. We investigated the convergence of putative schizophrenia risk genes in brain coexpression networks in postmortem human prefrontal cortex (DLPFC), hippocampus, caudate nucleus, and dentate gyrus granule cells, parsed by specific age periods (total  = 833). The results support an early prefrontal involvement in the biology underlying schizophrenia and reveal a dynamic interplay of regions in which age parsing explains more variance in schizophrenia risk compared to lumping all age periods together.

View Article and Find Full Text PDF
Article Synopsis
  • * Ancestry-associated differentially expressed genes (DEGs) are linked to immune response and vascular tissue, contributing to heritability for conditions like ischemic stroke, Parkinson's disease, and Alzheimer's disease, while showing less influence on psychiatric traits.
  • * The study reveals that both genetic variation and environmental factors (like DNA methylation) shape gene expression differences across ancestry, impacting the risk of brain illnesses in diverse populations.
View Article and Find Full Text PDF

When somatic cells acquire complex karyotypes, they are removed by the immune system. Mutant somatic cells that evade immune surveillance can lead to cancer. Neurons with complex karyotypes arise during neurotypical brain development, but neurons are almost never the origin of brain cancers.

View Article and Find Full Text PDF

Most studies of gene expression in the brains of individuals with schizophrenia have focused on cortical regions, but subcortical nuclei such as the striatum are prominently implicated in the disease, and current antipsychotic drugs target the striatum's dense dopaminergic innervation. Here, we performed a comprehensive analysis of the genetic and transcriptional landscape of schizophrenia in the postmortem caudate nucleus of the striatum of 443 individuals (245 neurotypical individuals, 154 individuals with schizophrenia and 44 individuals with bipolar disorder), 210 from African and 233 from European ancestries. Integrating expression quantitative trait loci analysis, Mendelian randomization with the latest schizophrenia genome-wide association study, transcriptome-wide association study and differential expression analysis, we identified many genes associated with schizophrenia risk, including potentially the dopamine D2 receptor short isoform.

View Article and Find Full Text PDF

Purpose: The low mutational load of some cancers is considered one reason for the difficulty to develop effective tumor vaccines. To overcome this problem, we developed a strategy to design neopeptides through single amino acid mutations to enhance their immunogenicity.

Experimental Design: Exome and RNA sequencing as well as in silico HLA-binding predictions to autologous HLA molecules were used to identify candidate neopeptides.

View Article and Find Full Text PDF

We analyzed 131 human brains (44 neurotypical, 19 with Tourette syndrome, 9 with schizophrenia, and 59 with autism) for somatic mutations after whole genome sequencing to a depth of more than 200×. Typically, brains had 20 to 60 detectable single-nucleotide mutations, but ~6% of brains harbored hundreds of somatic mutations. Hypermutability was associated with age and damaging mutations in genes implicated in cancers and, in some brains, reflected in vivo clonal expansions.

View Article and Find Full Text PDF

Objective: Posttraumatic stress disorder (PTSD) is a debilitating neuropsychiatric disease that is highly comorbid with major depressive disorder (MDD) and bipolar disorder. The overlap in symptoms is hypothesized to stem from partially shared genetics and underlying neurobiological mechanisms. To delineate conservation between transcriptional patterns across PTSD and MDD, the authors examined gene expression in the human cortex and amygdala in these disorders.

View Article and Find Full Text PDF

Bioelectronics needs to continuously monitor mechanical and electrophysiological signals for patients. However, the signals always include artifacts by patients' unexpected movement (such as walking and respiration under approximately 30 hertz). The current method to remove them is a signal process that uses a bandpass filter, which may cause signal loss.

View Article and Find Full Text PDF