Publications by authors named "Jonnell C Small"

Glucolipotoxicity (GLT), in which elevated levels of glucose and fatty acids have deleterious effects on β-cell biology, is thought to be one of the major contributors in progression of type 2 diabetes. In search of novel small molecules that protect β-cells against GLT, we previously discovered KD025, an inhibitor of Rho-associated coiled-coil-containing kinase isoform 2 (ROCK2), as a GLT-protective compound in INS-1E cells and dissociated human islets. To further understand the mechanism of action of KD025, we found that pharmacological and genetic inhibition of ROCK2 was not responsible for the protective effects of KD025 against GLT.

View Article and Find Full Text PDF

Transcription factors have proven difficult to target with small molecules because they lack pockets necessary for potent binding. Disruption of protein expression can suppress targets and enable therapeutic intervention. To this end, we developed a drug discovery workflow that incorporates cell-line-selective screening and high-throughput expression profiling followed by regulatory network analysis to identify compounds that suppress regulatory drivers of disease.

View Article and Find Full Text PDF

Type 2 diabetes is marked by progressive β-cell failure, leading to loss of β-cell mass. Increased levels of circulating glucose and free fatty acids associated with obesity lead to β-cell glucolipotoxicity. There are currently no therapeutic options to address this facet of β-cell loss in obese type 2 diabetes patients.

View Article and Find Full Text PDF

The identification of targeted agents with high therapeutic index is a major challenge for cancer drug discovery. We found that screening chemical libraries across neuroblastoma (NBL) tumor subtypes for selectively-lethal compounds revealed metabolic dependencies that defined each subtype. Bioactive compounds were screened across cell models of mesenchymal (MESN) and MYCN-amplified (MYCNA) NBL subtypes, which revealed the mevalonate and folate biosynthetic pathways as MESN-selective dependencies.

View Article and Find Full Text PDF