Background: Virtual simulation is the re-creation of reality depicted on a computer screen. It offers the possibility to exercise motor and psychomotor skills. In biomedical and medical education, there is an attempt to find new ways to support students' learning in neurophysiology.
View Article and Find Full Text PDFThe clonidine-like central antihypertensive agent rilmenidine, which has high affinity for I1-type imidazoline receptors (I1-IR) was recently found to have cytotoxic effects on cultured cancer cell lines. However, due to its pharmacological effects resulting also from α2-adrenoceptor activation, rilmenidine cannot be considered a suitable anticancer drug candidate. Here, we report the identification of novel rilmenidine-derived compounds with anticancer potential and devoid of α2-adrenoceptor effects by means of ligand- and structure-based drug design approaches.
View Article and Find Full Text PDFIn a search for novel antihypertensive drugs we applied scaffold hopping from the previously described α1-adrenergic receptor antagonists, 1-[(imidazolin-2-yl)methyl]indazoles. The aim was to investigate whether the α-adrenergic properties of the indazole core were transferable to the indole core. The newly obtained 1-[(imidazolin-2-yl)methyl]indole analogues were screened in vitro for their binding affinities for α1-and α2-adrenoceptors, which allowed the identification of the target-based SAR transfer (T_SAR transfer) as well as structure-based SAR transfer (S_SAR transfer) events.
View Article and Find Full Text PDFThe aim of these studies was to establish the influence of fluorination of the indazole ring on the pharmacological properties of two selective α2-adrenoceptor (α2-AR) agonists: 1-[(imidazolidin-2-yl)imino]-1H-indazole (marsanidine, A) and its methylene analogue 1-[(4,5-dihydro-1H-imidazol-2-yl)methyl]-1H-indazole (B). Introduction of fluorine into the indazole ring of A and B reduced both binding affinity and α2-AR/I1 imidazoline binding site selectivity. The most α2-AR-selective ligands were 6-fluoro-1-[(imidazolidin-2-yl)imino]-1H-indazole (6c) and 7-fluoro-1-[(imidazolidin-2-yl)imino]-1H-indazole (6d).
View Article and Find Full Text PDFA series of 2-[(heteroaryl)methyl]imidazolines was synthesized and tested for their activities at α(1)- and α(2)-adrenoceptors and imidazoline I(1) and I(2) receptors. The most active 2-[(indazol-1-yl)methyl]imidazolines showed high or moderate affinities for α(1)- and α(2)-adrenoceptors. However, their intrinsic activities at α(2A)-adrenoceptors proved to be negligible.
View Article and Find Full Text PDFA series of 3-[(4,5-dihydroimidazolidin-2-yl)imino]indazoles has been synthesized as positional analogues of marsanidine, a highly selective α(2)-adrenoceptor ligand. Parent compound 4a and its 4-chloro (4c) and 4-methyl (4d) derivatives display α(2)-adrenoceptor affinity at nanomolar concentrations (K(i)=39.4, 15.
View Article and Find Full Text PDFG protein-coupled octopamine receptors of insects and other invertebrates represent counterparts of adrenoceptors in vertebrate animals. The alpha(2)-adrenoceptor agonist medetomidine, which is in clinical use as a veterinary sedative agent, was discovered to inhibit the settling process of barnacles, an important step in the ontogeny of this crustacean species. Settling of barnacles onto ship hulls leads to biofouling that has many harmful practical consequences, and medetomidine is currently under development as a novel type of antifouling agent.
View Article and Find Full Text PDFThe goal of the present study was to modulate the receptor interaction properties of known alpha 2-adrenoreceptor (AR) antagonists to obtain novel alpha 2-AR agonists with desirable subtype selectivity. Therefore, a phenyl group or one of its bioisosteres or aliphatic moieties with similar steric hindrance were introduced into the aromatic ring of the antagonist lead basic structure. The functional properties of the novel compounds allowed our previous observations to be confirmed.
View Article and Find Full Text PDF