An expression vector (pSJyub-5) was constructed which contained five repeats of the "yeast ubiquitin gene" regulated by a heat-inducible lambda PL promoter. The vector, when expressed in Escherichia coli, produced a penta-ubiquitin of approximately 42 kDa. Purified penta-ubiquitin was found to be as active as the human mono-ubiquitin in the in vitro ATP/ubiquitin-dependent proteolytic assay of the reticulocyte lysate, indicating that the expressed gene product was recognized by the enzymes involved in the ATP/ubiquitin-dependent proteolytic pathway.
View Article and Find Full Text PDFTo study the structure and function of ubiquitin we have chemically synthesized a ubiquitin gene that encodes the amino acid sequence of animal ubiquitin, inserting a series of restriction enzyme sites that divide the gene into eight "mutagenesis modules." A series of site-specific mutations were constructed to selectively perturb various regions of the molecule. The mutant genes were expressed in a large quantity of Escherichia coli, and the modified proteins were purified.
View Article and Find Full Text PDFTo localise the controlling point of the glycolytic system, the temporal changes in concentrations of glycolytic intermediates have been analysed after addition of glycogen to a substrate-depleted yeast extract. Three sequential metabolic states are clearly observable: a transition state at which there is continuous accumulation of the intermediates before the glyceraldehydephosphate dehydrogenase (GAPDH, EC 1.2.
View Article and Find Full Text PDF