We have studied in vivo responses of "spontaneous" Brca1- and p53-deficient mammary tumors arising in conditional mouse mutants to treatment with doxorubicin, docetaxel, or cisplatin. Like human tumors, the response of individual mouse tumors varies, but eventually they all become resistant to the maximum tolerable dose of doxorubicin or docetaxel. The tumors also respond well to cisplatin but do not become resistant, even after multiple treatments in which tumors appear to regrow from a small fraction of surviving cells.
View Article and Find Full Text PDFWomen carrying germ-line mutations in BRCA1 are strongly predisposed to developing breast cancers with characteristic features also observed in sporadic basal-like breast cancers. They appear as high-grade tumors with high proliferation rates and pushing borders. On the molecular level, they are negative for hormone receptors and ERBB2, display frequent TP53 mutations, and express basal epithelial markers.
View Article and Find Full Text PDFMetastatic disease is the major cause of death in breast cancer patients. Patients presenting with metastases cannot be cured, and as a consequence, treatment is palliative and focuses on prolonging survival and maintaining quality of life. Numerous mouse models have been generated in which human breast cancer development and metastasis have been studied, ranging from spontaneous and carcinogen-induced models to transplantation models and genetically engineered mouse models.
View Article and Find Full Text PDFp53 alterations in human tumors often involve missense mutations that may confer dominant-negative or gain-of-function properties. Dominant-negative effects result in inactivation of wild-type p53 protein in heterozygous mutant cells and as such in a p53 null phenotype. Gain-of-function effects can directly promote tumor development or metastasis through antiapoptotic mechanisms or transcriptional activation of (onco)genes.
View Article and Find Full Text PDFWe performed a high-throughput retroviral insertional mutagenesis screen in mouse mammary tumor virus (MMTV)-induced mammary tumors and identified 33 common insertion sites, of which 17 genes were previously not known to be associated with mammary cancer and 13 had not previously been linked to cancer in general. Although members of the Wnt and fibroblast growth factors (Fgf) families were frequently tagged, our exhaustive screening for MMTV insertion sites uncovered a new repertoire of candidate breast cancer oncogenes. We validated one of these genes, Rspo3, as an oncogene by overexpression in a p53-deficient mammary epithelial cell line.
View Article and Find Full Text PDFLigand-activated Cre recombinases are widely used for studying gene function in vitro and in conditional mouse models. To compare ligand-dependent Cre recombinases, different Cre estrogen receptor fusions were introduced into the ROSA26 locus of embryonic stem (ES) cells and assayed for genotoxicity and recombination efficiency. Of the tested recombinases, the CreERT2 variant showed no toxicity and was highly responsive to ligand induction.
View Article and Find Full Text PDFBackground & Aims: During early stages of carcinogenesis most human epithelial cancers including hepatocellular carcinoma (HCC) have been observed to transit through a "crisis" stage characterized by telomere shortening, loss of p53 checkpoint function, and a sharp increase in aneuploidy. The function of telomerase during in vivo hepatocarcinogenesis has not been studied in this genetic context.
Methods: Here we generated a mouse model in which HCC was induced by chronic organ damage (HBs-AG transgene) in the presence of telomere shortening and p53 deletion.
BRCA1, a breast and ovarian cancer-suppressor gene, exerts tumor-suppressing functions that appear to be associated, at least in part, with its DNA repair, checkpoint, and mitotic regulatory activities. Earlier work from our laboratory also suggested an ability of BRCA1 to communicate with the inactive X chromosome (Xi) in female somatic cells (Ganesan et al., 2002).
View Article and Find Full Text PDFAlthough chromosomal instability characterizes the majority of human colorectal cancers, the contribution of genes such as adenomatous polyposis coli (APC), KRAS, and p53 to this form of genetic instability is still under debate. Here, we have assessed chromosomal imbalances in tumors from mouse models of intestinal cancer, namely Apc(+/1638N), Apc(+/1638N)/KRAS(V12G), and Apc(+/1638N)/Tp53-/-, by array comparative genomic hybridization. All intestinal adenomas from Apc(+/1638N) mice displayed chromosomal alterations, thus confirming the presence of a chromosomal instability defect at early stages of the adenoma-carcinoma sequence.
View Article and Find Full Text PDFMetastatic disease is the primary cause of death in breast cancer, the most common malignancy in Western women. Loss of E-cadherin is associated with tumor metastasis, as well as with invasive lobular carcinoma (ILC), which accounts for 10%-15% of all breast cancers. To study the role of E-cadherin in breast oncogenesis, we have introduced conditional E-cadherin mutations into a mouse tumor model based on epithelium-specific knockout of p53.
View Article and Find Full Text PDFEpithelial ovarian cancer (EOC) is thought to arise from the ovarian surface epithelium (OSE); however, the molecular events underlying this transformation are poorly understood. Germline mutations in the BRCA1 tumor suppressor gene result in a significantly increased risk of developing EOC and a large proportion of sporadic EOCs display some sort of BRCA1 dysfunction. Using mice with conditional expression of Brca1, we inactivated Brca1 in the murine OSE and demonstrate that this inactivation results in the development of preneoplastic changes, such as hyperplasia, epithelial invaginations, and inclusion cysts, which arise earlier and are more numerous than in control ovaries.
View Article and Find Full Text PDFGermline mutations in BRCA1 and BRCA2 are responsible for a large proportion of hereditary breast and ovarian cancers. Soon after the identification of both genes in the mid-1990s, investigators set out to develop mouse models for the associated disease. Whereas conventional Brca1 and Brca2 mouse mutants did not reveal a strong phenotype in a heterozygous setting, most homozygous mutations caused embryonic lethality.
View Article and Find Full Text PDFAutotaxin (ATX), or nucleotide pyrophosphatase-phosphodiesterase 2, is a secreted lysophospholipase D that promotes cell migration, metastasis, and angiogenesis. ATX generates lysophosphatidic acid (LPA), a lipid mitogen and motility factor that acts on several G protein-coupled receptors. Here we report that ATX-deficient mice die at embryonic day 9.
View Article and Find Full Text PDFThe cellular composition of an atherosclerotic lesion is determined by cell infiltration, proliferation, and apoptosis. The tumor suppressor gene retinoblastoma (Rb) has been shown to regulate both cell proliferation and cell death in many cell types. To study the role of macrophage Rb in the development of atherosclerosis, we used apoE-deficient mice with a macrophage-restricted deletion of Rb (Rb(del) mice) and control littermates (Rb(fl) mice).
View Article and Find Full Text PDFArray-based comparative genomic hybridization is a high resolution method for measuring chromosomal copy number changes. Here we present a validated protocol using in-house spotted oligonucleotide libraries for array comparative genomic hybridization (CGH). This oligo array CGH platform yields reproducible results and is capable of detecting single copy gains, multi-copy amplifications as well as homozygous and heterozygous deletions as small as 100 kb with high resolution.
View Article and Find Full Text PDFThe tumor suppressor gene p53 has an apparent role in breast tumor development in humans, as approximately 30% of sporadic tumors acquire p53 mutations and Li-Fraumeni syndrome patients carrying germ line p53 mutations frequently develop breast tumors at early age. In the present study, conditional expression of a targeted mutation is used to analyze the role of the human R273H tumor-associated hotspot mutation in p53 in mammary gland tumorigenesis. Heterozygous p53(R270H/+)WAPCre mice (with mammary gland-specific expression of the p53.
View Article and Find Full Text PDFWnt-signal transduction through beta-catenin is thought to require the inhibition of GSK3 by Frat/GBP. To investigate the role of Frat in mammalian development, we have generated mice with targeted mutations in all three murine Frat homologs. We show that Frat is normally expressed at sites of active Wnt signaling.
View Article and Find Full Text PDFTumors induced in conditional oncomice can show remarkable different responses to subsequent oncogene deprivation. Complete sustained regression, concomitant with massive differentiation and/or apoptosis, and partial regression are both observed. In the latter case, tumor growth either resumes without being dependent any longer on the oncogene, or requires reactivation of the oncogene in cells that have become dormant.
View Article and Find Full Text PDFEmbryonic stem cell technology revolutionized biology by providing a means to assess mammalian gene function in vivo. Although it is now routine to generate mice from embryonic stem cells, one of the principal methods used to create mutations, gene targeting, is a cumbersome process. Here we describe the indexing of 93,960 ready-made insertional targeting vectors from two libraries.
View Article and Find Full Text PDFMouse mammary tumor virus (MMTV) infection causes a high incidence of murine mammary carcinomas by insertion of its proviral DNA in the genome of mammary epithelial cells. Retroviral insertion can activate flanking proto-oncogenes by a process called insertional mutagenesis. By sequencing the DNA adjacent to MMTV proviral insertions in mammary tumors from BALB/c mice infected with C3H-MMTV, we have found a common MMTV insertion site in the Fgf10 locus.
View Article and Find Full Text PDFThe Pim family of proto-oncogenes encodes a distinct class of serine/threonine kinases consisting of PIM1, PIM2, and PIM3. Although the Pim genes are evolutionarily highly conserved, the contribution of PIM proteins to mammalian development is unclear. PIM1-deficient mice were previously described but showed only minor phenotypic aberrations.
View Article and Find Full Text PDFThe Frat1 proto-oncogene was first identified as a gene contributing to tumor progression in T-cell lymphomas induced by retroviral insertional mutagenesis with the Moloney murine leukemia virus. The biological function of Frat remained elusive until its Xenopus homologue GBP was isolated as a glycogen synthase kinase 3 (GSK3)-binding protein and was shown to be an essential component of the maternal Wnt-signaling pathway. To date two Frat homologues have been described in the mouse, Frat1 and Frat3.
View Article and Find Full Text PDFMicroarray-based comparative genomic hybridization (CGH) has become a powerful method for the genome-wide detection of chromosomal imbalances. Although BAC microarrays have been used for mouse CGH studies, the resolving power of these analyses was limited because high-density whole-genome mouse BAC microarrays were not available. We therefore developed a mouse BAC microarray containing 2803 unique BAC clones from mouse genomic libraries at 1-Mb intervals.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
September 2002
Plasmas, produced by a neodymium yttrium aluminum garnet (Nd:YAG) laser pulse focused on a small water droplet and used for the generation of extreme ultraviolet light, can be described by a relatively simple model due to the fact that thermodynamic equilibrium can be assumed for the most important phase. Only three time-dependent variables--radius, expansion speed, and internal energy--are needed to describe the physics of the plasma. Nevertheless, it predicts quantities such as the size and the spectrum rather well.
View Article and Find Full Text PDF