It is clear that alcohol consumption is a major risk factor in the pathogenesis of head and neck squamous cell carcinoma (HNSCC); however, the molecular mechanism underlying the pathogenesis of alcohol-associated HNSCC remains poorly understood. The aim of the present study was to identify and characterize P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) and PIWI proteins dysregulated in alcohol-associated HNSCC to elucidate their function in the development of this cancer. Using next generation RNA-sequencing (RNA-seq) data obtained from 40 HNSCC patients, the piRNA and PIWI protein expression of HNSCC samples was compared between alcohol drinkers and non-drinkers.
View Article and Find Full Text PDFHead and neck squamous cell carcinoma (HNSCC) is an aggressive disease marked by frequent recurrence and metastasis and stagnant survival rates. To enhance molecular knowledge of HNSCC and define a non-coding RNA (ncRNA) landscape of the disease, we profiled the transcriptome-wide dysregulation of long non-coding RNA (lncRNA), microRNA (miRNA), and PIWI-interacting RNA (piRNA) using RNA-sequencing data from 422 HNSCC patients in The Cancer Genome Atlas (TCGA). 307 non-coding transcripts differentially expressed in HNSCC were significantly correlated with patient survival, and associated with mutations in TP53, CDKN2A, CASP8, PRDM9, and FBXW7 and copy number variations in chromosomes 3, 5, 7, and 18.
View Article and Find Full Text PDFHead and neck squamous cell carcinoma persists as one of the most common and deadly malignancies, with early detection and effective treatment still posing formidable challenges. To expand our currently sparse knowledge of the noncoding alterations involved in the disease and identify potential biomarkers and therapeutic targets, we globally profiled the dysregulation of small nucleolar and long noncoding RNAs in head and neck tumors. Using next-generation RNA-sequencing data from 40 pairs of tumor and matched normal tissues, we found 2808 long noncoding RNA (lncRNA) transcripts significantly differentially expressed by a fold change magnitude ≥2.
View Article and Find Full Text PDF