We demonstrate and analyze anomalous diffusion properties of point-like particles in a two-dimensional system with circular scatterers arranged in a square lattice and governed by smooth potentials, referred to as the square soft Lorentz gas. Our numerical simulations reveal a rich interplay of normal and anomalous diffusion depending on the system parameters. To describe diffusion in normal regimes, we develop a unit cell hopping model that, in the single-hop limit, recovers the Machta-Zwanzig approximation and converges toward the numerical diffusion coefficient as the number of hops increases.
View Article and Find Full Text PDF