Recent human brain imaging studies have identified widely distributed cortical areas that represent information about the meaning of language. Yet, the dynamic nature of widespread neural activity as a correlate of the semantic information processing remains poorly explored. Our state space analysis of electroencephalograms (EEGs) recorded during semantic match-to-category task show that depending on the semantic category and decision path chosen by participants, whole-brain delta-band dynamics follow distinct trajectories that are correlated with participants' response time on a trial-by-trial basis.
View Article and Find Full Text PDFAchieving long-lasting neuronal modulation with low-intensity, low-frequency ultrasound is challenging. Here, we devised theta burst ultrasound stimulation (TBUS) with gamma bursts for brain entrainment and modulation of neuronal plasticity in the mouse motor cortex. We demonstrate that two types of TBUS, intermittent and continuous TBUS, induce bidirectional long-term potentiation or depression-like plasticity, respectively, as evidenced by changes in motor-evoked potentials.
View Article and Find Full Text PDFAnimals often display choice bias, or a preference for one option over the others, which can significantly impede learning new tasks. Delayed match-to-sample (DMS) tasks with two-alternative choices of lickports on the left and right have been widely used to study sensory processing, working memory, and associative memory in head-fixed animals. However, extensive training time, primarily due to the animals' biased licking responses, limits their practical utility.
View Article and Find Full Text PDFRecognizing an individual and retrieving and updating the value information assigned to the individual are fundamental abilities for establishing social relationships. To understand the neural mechanisms underlying the association between social identity and reward value, we developed Go-NoGo social discrimination paradigms that required male subject mice to distinguish between familiar mice based on their individually unique characteristics and associate them with reward availability. We found that mice could discriminate individual conspecifics through a brief nose-to-nose investigation, and this ability depended on the dorsal hippocampus.
View Article and Find Full Text PDFIt is clear that humans can extract statistical information from streams of visual input, yet how our brain processes sequential images into the abstract representation of the mean feature value remains poorly explored. Using multivariate pattern analyses of electroencephalography recorded while human observers viewed 10 sequentially presented Gabors of different orientations to estimate their mean orientation at the end, we investigated sequential averaging mechanism by tracking the quality of individual and mean orientation as a function of sequential position. Critically, we varied the sequential variance of Gabor orientations to understand the neural basis of perceptual mean errors occurring during a sequential averaging task.
View Article and Find Full Text PDF