Publications by authors named "Jongpil Ye"

There is growing interest in systems with randomized responses for generating physically unclonable functions (PUFs) in anticounterfeiting and authentication applications. Atomic-level control over its thickness and unique Raman spectrum make graphene an attractive material for PUF applications. Herein, we report graphene PUFs that emerge from two independent stochastic processes.

View Article and Find Full Text PDF

Sensitive and selective detection of target gases is the ultimate goal for commercialization of graphene gas sensors. Here, ultrasensitive n-channel graphene gas sensors were developed by using n-doped graphene with ethylene amines. The exposure of the n-doped graphene to oxidizing gases such as NO leads to a current decrease that depends strongly on the number of amine functional groups in various types of ethylene amines.

View Article and Find Full Text PDF

Surface modification layer of a silicon substrate has been used to enhance the performance of graphene field-effect transistors (FETs). In this report, ultrathin and chemically robust polymer brush was used as a surface modification to enhance the gas sensing properties of graphene FETs. The insertion of the polymer brush decreased substrate-induced doping of graphene.

View Article and Find Full Text PDF

Templated solid-state dewetting of single-crystal films has been shown to be used to produce regular patterns of various shapes. However, the materials for which this patterning method is applicable, and the size range of the patterns produced are still limited. Here, it is shown that ordered arrays of micro- and nanoscale features can be produced with control over their shape and size via solid-state dewetting of patches patterned from single-crystal palladium and nickel films of different thicknesses and orientations.

View Article and Find Full Text PDF

Scaling graphene growth using an oven to heat large substrates becomes less energy efficient as system size is increased. We report a route to graphene synthesis in which radio frequency (RF) magnetic fields inductively heat metal foils, yielding graphene of quality comparable to or higher than that of current chemical vapor deposition techniques. RF induction heating allows for rapid temperature ramp up/down, with great potential for large scale and rapid manufacturing of graphene with much better energy efficiency.

View Article and Find Full Text PDF