Spectrochim Acta A Mol Biomol Spectrosc
November 2024
A stable and efficient hole-transport material (HTM) is crucial for high-performance perovskite solar cells (PSCs). A 2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene (Spiro-MeOTAD) being used widely to prepare highly efficient PSCs. However, Spiro-MeOTAD has some limitations due to its complex synthesis, which increases its cost, and it also requires dopants to improve its performance.
View Article and Find Full Text PDFA high-quality nanostructured tin oxide (SnO) has garnered massive attention as an electron transport layer (ETL) for efficient perovskite solar cells (PSCs). SnO is considered the most effective alternative to titanium oxide (TiO) as ETL because of its low-temperature processing and promising optical and electrical characteristics. However, some essential modifications are still required to further improve the intrinsic characteristics of SnO, such as mismatch band alignments, charge extraction, transportation, conductivity, and interfacial recombination losses.
View Article and Find Full Text PDFThermal annealing (TA) of colloidal quantum dot (CQD) films is considered an important process for recent high-performing CQD solar cells (SCs) due to its beneficial effects on CQD solids, including enhanced electrical conductivity, denser packing of CQD films, and the removal of organic residues and solvents. However, the conventional TA for CQDs, which requires several minutes, leads to hydroxylation and oxidation on the CQD surface, resulting in the formation of trap states and a subsequent decline in SC performance. To address these challenges, this study introduces a flashlight annealing (FLA) technique that significantly reduces the annealing time to the millisecond scale.
View Article and Find Full Text PDFIn surface-enhanced Raman spectroscopy (SERS), 2D materials are explored as substrates owing to their chemical stability and reproducibility. However, they exhibit lower enhancement factors (EFs) compared to noble metal-based SERS substrates. This study demonstrates the application of ultrathin covellite copper sulfide (CuS) as a cost-effective SERS substrate with a high EF value of 7.
View Article and Find Full Text PDFTo advance cancer treatment, we have developed a novel composite material consisting of conjugated polymer dots (CPDs) and Prussian blue (PB) particles, which were immobilized on, and encapsulated within, silica particles, respectively. The CPDs functioned as both a photosensitizer and a photodynamic agent, and the PB acted as a photothermal agent. The silica platform provided a biocompatible matrix that brought the two components into close proximity.
View Article and Find Full Text PDFAn unprecedented but useful functionality of perfluoroarenes to enable exciton scissoring in photomultiplication-type organic photodiodes (PM-OPDs) is reported. Perfluoroarenes that are covalently connected to polymer donors via a photochemical reaction enable the demonstration of high external quantum efficiency and B-/G-/R-selective PM-OPDs without the use of conventional acceptor molecules. The operation mechanism of the suggested perfluoroarene-driven PM-OPDs, how covalently bonded polymer donor:perfluoroarene PM-OPDs can perform as effectively as polymer donor:fullerene blend-based PM-OPDs, is investigated.
View Article and Find Full Text PDFIn order to shield perovskite solar cells (PSCs) from extrinsic degradation factors and ensure long-term stability, effective encapsulation technology is indispensable. Here, a facile process is developed to create a glass-glass encapsulated semitransparent PSC using thermocompression bonding. From quantifying the interfacial adhesion energy and considering the power conversion efficiency of devices, it is confirmed that bonding between perovskite layers formed on a hole transport layer (HTL)/indium-doped tin oxide (ITO) glass and an electron transport layer (ETL)/ITO glass can offer an excellent lamination method.
View Article and Find Full Text PDFRecently, multijunction tandem solar cells (TSCs) have presented high power conversion efficiency and revealed their immense potential in photovoltaic evolution. It is demonstrated that multiple light absorbers with various bandgap energies overcome the Shockley-Queisser limit of single-junction solar cells by absorbing the wide-range wavelength photons. Here, the main key challenges are reviewed, especially the charge carrier dynamics in perovskite-based 2-terminal (2-T) TSCs in terms of current matching, and how to manage these issues from a vantage point of characterization.
View Article and Find Full Text PDFTo investigate the effect of miscibility between conjugated polymers (CPs) and Y6 on bulk-heterojunction (BHJ) type morphology, we propose three different CPs with similar chemical structures but different miscibility with Y6. After selectively removing Y6 from the CP/Y6 blend films, their interface morphology and interlocked dimensions are quantitatively compared using a square-wave model. As CP-Y6 miscibility increases, a higher intermixed interface is formed, providing an enlarged CP-Y6 interface area.
View Article and Find Full Text PDFFormamidinium lead triiodide (FAPbI) is the leading candidate for single-junction metal-halide perovskite photovoltaics, despite the metastability of this phase. To enhance its ambient-phase stability and produce world-record photovoltaic efficiencies, methylenediammonium dichloride (MDACl) has been used as an additive in FAPbI. MDA has been reported as incorporated into the perovskite lattice alongside Cl.
View Article and Find Full Text PDFColloidal nanocrystals (NCs) have shown remarkable promise for optoelectronics, energy harvesting, photonics, and biomedical imaging. In addition to optimizing quantum confinement, the current challenge is to obtain a better understanding of the critical processing steps and their influence on the evolution of structural motifs. Computational simulations and electron microscopy presented in this work show that nanofaceting can occur during nanocrystal synthesis from a Pb-poor environment in a polar solvent.
View Article and Find Full Text PDFTo separately explore the importance of hydrophilicity and backbone planarity of polymer photocatalyst, a series of benzothiadiazole-based donor-acceptor alternating copolymers incorporating alkoxy, linear oligo(ethylene glycol) (OEG) side chain, and backbone fluorine substituents is presented. The OEG side chains in the polymer backbone increase the surface energy of the polymer nanoparticles, thereby improving the interaction with water and facilitating electron transfer to water. Moreover, the OEG-attached copolymers exhibit enhanced intermolecular packing compared to polymers with alkoxy side chains, which is possibly attributed to the self-assembly properties of the side chains.
View Article and Find Full Text PDFCharge carrier mobility is a fundamental property of semiconductor materials that governs many electronic device characteristics. For metal halide perovskites, a wide range of charge carrier mobilities have been reported using different techniques. Mobilities are often estimated via transient methods assuming an initial charge carrier population after pulsed photoexcitation and measurement of photoconductivity via non-contact or contact techniques.
View Article and Find Full Text PDFIn light-emitting diodes (LEDs), balanced electron and hole transport is of particular importance to achieve high rates of radiative recombination. Most quantum dot (QD)-based LEDs, however, employ infinitesimal core-shell QDs which inherently have different electron and hole mobilities. As QDs are the core building blocks of QD-LEDs, the inherent mobility difference in the core-shell QDs causes significantly unbalanced charge carrier transport, resulting in detrimental effects on performances of QD-LEDs.
View Article and Find Full Text PDFSpace-charge-limited current (SCLC) measurements have been widely used to study the charge carrier mobility and trap density in semiconductors. However, their applicability to metal halide perovskites is not straightforward, due to the mixed ionic and electronic nature of these materials. Here, we discuss the pitfalls of SCLC for perovskite semiconductors, and especially the effect of mobile ions.
View Article and Find Full Text PDFLongevity has been a long-standing concern for hybrid perovskite photovoltaics. We demonstrate high-resilience positive-intrinsic-negative perovskite solar cells by incorporating a piperidinium-based ionic compound into the formamidinium-cesium lead-trihalide perovskite absorber. With the bandgap tuned to be well suited for perovskite-on-silicon tandem cells, this piperidinium additive enhances the open-circuit voltage and cell efficiency.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFLooking beyond energy harvesting, metal-halide perovskites offer great opportunities to revolutionise large-area photodetection technologies due to their high absorption coefficients, long diffusion lengths, low trap densities and simple processability. However, successful extraction of photocarriers from perovskites and their conversion to electrical signals remain challenging due to the interdependency of photogain and dark current density. Here we report hybrid hetero-phototransistors by integrating perovskites with organic semiconductor transistor channels to form either "straddling-gap" type-I or "staggered-gap" type-II heterojunctions.
View Article and Find Full Text PDFHerein, poly(3-hexylthiophene) films with periodic wavy surface structures are generated upon laser irradiation at a wavelength of 530 nm using a pulse duration of 5 ns and a repetition frequency of 10 Hz. The optical properties of the films irradiated with 1200, 3000, and 6000 pulses, respectively, are studied using various techniques.
View Article and Find Full Text PDFIn a quantum dot solar cell (QDSC) that has an inverted structure, the QD layers form two different junctions between the electron transport layer (ETL) and the other semiconducting QD layer. Recent work on an inverted-structure QDSC has revealed that the junction between the QD layers is the dominant junction, rather than the junction between the ETL and the QD layers, which is in contrast to the conventional wisdom. However, to date, there have been a lack of systematic studies on the role and importance of the QD heterojunction structure on the behavior of the solar cell and the resulting device performance.
View Article and Find Full Text PDFColloidal quantum dots (CQDs) are extremely promising as photovoltaic materials. In particular, the tunability of their electronic band gap and cost effective synthetic procedures allow for the versatile fabrication of solar energy harvesting cells, resulting in optimal device performance. However, one of the main challenges in developing high performance quantum dot solar cells (QDSCs) is the improvement of the photo-generated charge transport and collection, which is mainly hindered by imperfect surface functionalization, such as the presence of surface electronic trap sites and the initial bulky surface ligands.
View Article and Find Full Text PDFMetal halide perovskite thin films can be crystallized via a broad range of solution-based routes. However, the quality of the final films is strongly dependent upon small changes in solution composition and processing parameters. Here, this study demonstrates that a fractional substitution of PbCl with PbI in the 3CH NH I:PbCl mixed-halide starting solution has a profound influence upon the ensuing thin-film crystallization.
View Article and Find Full Text PDFWe demonstrate an optical amplification of organic dye within a TiO2 inverse-opal (IO) distributed feedback (DFB) reflector prepared by a slide-coating method. Highly reflective TiO2 IO film was fabricated by slide coating the binary aqueous dispersions of polystyrene microspheres and charge-stabilized TiO2 nanoparticles on a glass slide and subsequently removing the polymer-opal template. TiO2 IO film was infiltrated, in turn, with the solutions of DCM, a fluorescent dye in various solvents with different indices of refraction.
View Article and Find Full Text PDF