Background: The explosive growth of next-generation sequencing data has resulted in ultra-large-scale datasets and significant computational challenges. As the cost of next-generation sequencing (NGS) has decreased, the amount of genomic data has surged globally. However, the cost and complexity of the computational resources required continue to be substantial barriers to leveraging big data.
View Article and Find Full Text PDFFunctional analyses of genes are crucial for unveiling biological responses, genetic engineering, and developing new medicines. However, functional analyses have largely been restricted to model organisms, representing a major hurdle for functional studies and industrial applications. To resolve this, comparative genome analyses can be used to provide clues to gene functions as well as their evolutionary history.
View Article and Find Full Text PDFBMC Bioinformatics
February 2018
Background: While next-generation sequencing (NGS) costs have fallen in recent years, the cost and complexity of computation remain substantial obstacles to the use of NGS in bio-medical care and genomic research. The rapidly increasing amounts of data available from the new high-throughput methods have made data processing infeasible without automated pipelines. The integration of data and analytic resources into workflow systems provides a solution to the problem by simplifying the task of data analysis.
View Article and Find Full Text PDF