Nat Mater
October 2024
Novel two-dimensional semiconductor crystals can exhibit diverse physical properties beyond their inherent semiconducting attributes, making their pursuit paramount. Memristive properties, as exemplars of these attributes, are predominantly manifested in wide-bandgap materials. However, simultaneously harnessing semiconductor properties alongside memristive characteristics to produce memtransistors is challenging.
View Article and Find Full Text PDFIn the realm of two-dimensional (2D) crystal growth, the chemical composition often determines the thermodynamically favored crystallographic structures. This relationship poses a challenge in synthesizing novel 2D crystals without altering their chemical elements, resulting in the rarity of achieving specific crystallographic symmetries or lattice parameters. We present 2D polymorphic FeAs crystals that completely differ from bulk orthorhombic FeAs (), differing in the stacking sequence, i.
View Article and Find Full Text PDFResidual oxygen in wurtzite-type aluminum nitride (AlN) crystal, which significantly affects phonon transport and crystal growth, is crucial to thermal conductivity and the crystal quality of AlN ceramics. In this study, the effect of residual oxygen on the lattice of AlN was examined for as-synthesized and sintered samples. By controlling reaction time in the carbothermal reduction nitridation (CRN) procedure, AlN powder was successfully synthesized, and the amount of residual oxygen was systematically controlled.
View Article and Find Full Text PDFAluminum nitride, with its high thermal conductivity and insulating properties, is a promising candidate as a thermal dissipation material in optoelectronics and high-power logic devices. In this work, we have shown that the thermal conductivity and electrical resistivity of AlN ceramics are primarily governed by ionic defects created by oxygen dissolved in AlN grains, which are directly probed using Al NMR spectroscopy. We find that a 4-coordinated AlNO defect (O) in the AlN lattice is changed to intermediate AlNO, and further to 6-coordinated AlO with decreasing oxygen concentration.
View Article and Find Full Text PDFExtraordinary properties of traditional hyperbolic metamaterials, not found in nature, arise from their man-made subwavelength structures causing unique light-matter interactions. However, their preparation requiring nanofabrication processes is highly challenging and merely provides nanoscale two-dimensional structures. Stabilizing their bulk forms via scalable procedures has been a sought-goal for broad applications of this technology.
View Article and Find Full Text PDFFused deposition modeling (FDM) is a promising 3D printing and manufacturing step to create well interconnected porous scaffold designs from the computer-aided design (CAD) models for the next generation of bone scaffolds. The purpose of this study was to fabricate and evaluate a new biphasic calcium phosphate (BCP) scaffold reinforced with zirconia (ZrO ) by a FDM system for bone tissue engineering. The 3D slurry foams with blending agents were successfully fabricated by a FDM system.
View Article and Find Full Text PDFThe substitutional doping approach has been shown to be an effective strategy to improve of Bi₂Te₃-based thermoelectric raw materials. We herein report the Fe-doping effects on electronic and thermal transport properties of polycrystalline bulks of -type BiSbTe₃. After a small amount of Fe-doping on Bi/Sb-sites, the power factor could be enhanced due to the optimization of carrier concentration.
View Article and Find Full Text PDFZnO, a wide bandgap semiconductor, has attracted much attention due to its multifunctionality, such as transparent conducting oxide, light-emitting diode, photocatalyst, and so on. To improve its performances in the versatile applications, numerous hybrid strategies of ZnO with graphene have been attempted, and various synergistic effects have been achieved in the ZnO-graphene hybrid nanostructures. Here we report extraordinary charge transport behavior in Al-doped ZnO (AZO)-reduced graphene oxide (RGO) nanocomposites.
View Article and Find Full Text PDFIt is of critical importance to improve toughness, strength, and wear-resistance together for the development of advanced structural materials. Herein, we report on the synthesis of unoxidized graphene/alumina composite materials having enhanced toughness, strength, and wear-resistance by a low-cost and environmentally benign pressure-less-sintering process. The wear resistance of the composites was increased by one order of magnitude even under high normal load condition (25 N) as a result of a tribological effect of graphene along with enhanced fracture toughness (KIC) and flexural strength (σf) of the composites by ~75% (5.
View Article and Find Full Text PDFGraphene/inorganic hybrid structures have attracted increasing attention in research aimed at producing advanced optoelectronic devices and sensors. Herein, we report on aerosol synthesis of new graphene-embedded zinc oxide (ZnO) films with higher optical transparency (>80% at visible wavelengths), improved electrical conductivity (>2 orders of magnitude, ∼ 20 kΩ/□), and enhanced photoluminescence (∼ 3 times), as compared to bare ZnO film. The ZnO/graphene composite films, in which reduced graphene oxide nanoplatelets (∼ 4 nm thick) are embedded in nanograined ZnO (∼ 50 nm in grain size), were fabricated from colloidal suspensions of graphene oxide with an aqueous zinc precursor.
View Article and Find Full Text PDFThis study developed a bioabsorbable-guided bone regeneration membrane made of blended polycaprolactone (PCL), poly(lactic-co-glycolic acid) (PLGA), and beta-tricalcium phosphate (β-TCP) using solid freeform fabrication (SFF) technology. The chemical and physical properties of the membrane were evaluated using field emission scanning electron microscopy, energy dispersive spectroscopy, and a tensile test. In vitro cell activity assays revealed that the adhesion, proliferation, and osteogenic differentiation of seeded adipose-derived stem cells (ADSCs) were significantly promoted by the PCL/PLGA/β-TCP membranes compared with PCL/PLGA membranes.
View Article and Find Full Text PDFFabrication of a three-dimensional (3D) scaffold with increased mechanical strength may be an essential requirement for more advanced bone tissue engineering scaffolds. Various material- and chemical-based approaches have been explored to enhance the mechanical properties of engineered bone tissue scaffolds. In this study, the effects of pore architecture and stacking direction on the mechanical and cell proliferation properties of a scaffold were investigated.
View Article and Find Full Text PDFBackground: During 1999-2003, Japan experienced a series of measles epidemics, and in Action Plans to Control Measles and the Future Problems, it was proposed that infants be immunized soon after their one-year birthday.In this study, we attempted to estimate the nationwide economic disease burden of measles based on clinical data and the economic effectiveness of this proposal using the benefit cost ratio.
Methods: Our survey target was measles patients treated at Chiba-Nishi general hospital from January 1999 to September 2001.
Natural biomaterials such as hyaluronic acid, gelatin and collagen provide excellent environments for tissue regeneration. Furthermore, gel-state natural biomaterials are advantageous for encapsulating cells and growth factors. In cell printing technology, hydrogel which contains cells was printed directly to form three-dimensional (3D) structures for tissue or organ regeneration using various types of printers.
View Article and Find Full Text PDFThe scaffold, as a medical component to regenerate tissues or organs in humans, plays an important role in tissue engineering. Recently, solid freeform fabrication (SFF) technology using computer-assisted methods was applied to address the problems of conventional fabrication methods in which the internal/outer architectures cannot be controlled. In this report, we propose suitable scaffolds for bone tissue regeneration considering the internal pore size and scaffold architecture.
View Article and Find Full Text PDFBone tissue engineering often requires a well-defined scaffold that is highly porous. The multi-head deposition system (MHDS), a form of solid freeform fabrication, has raised great interest as a method for fabricating scaffolds, since it yields a highly porous inter-connective structure without the use of cytotoxic solvents, and permits the diffusion of nutrients and oxygen. However, this method is not suitable for introducing proteins, as it includes a heating process.
View Article and Find Full Text PDFSolid free-form fabrication (SFF) technology is used to fabricate scaffolds with controllable characteristics including well-defined pore size and porosity. The multi-head deposition system (MHDS), one form of SFF technology, may be more advantageous than others for fabricating scaffolds because a MHDS does not require the use of a cytotoxic solvent. This method, however, may induce the thermal degradation of raw materials and a subsequent decrease in the material's molecular weight, whereby hydrolytic degradation, resulting in acidic by-products, might be accelerated.
View Article and Find Full Text PDFIn this study, we fabricated polycaprolactone/hydroxyapatite (PCL/HA) scaffolds with a multi-head deposition system, a solid free-form fabrication technology that was developed in our previous study. The bone regeneration potential of the scaffolds was compared with that of PCL scaffolds fabricated with the same system. The fabricated scaffolds had a pore size of 400 mum and a porosity of 66.
View Article and Find Full Text PDFThe development of scaffolds for use in cell-based therapies to repair damaged bone tissue has become a critical component in the field of bone tissue engineering. However, design of scaffolds using conventional fabrication techniques has limited further advancement, due to a lack of the required precision and reproducibility. To overcome these constraints, bone tissue engineers have focused on solid free-form fabrication (SFF) techniques to generate porous, fully interconnected scaffolds for bone tissue engineering applications.
View Article and Find Full Text PDFWe investigated the feasibility of using solid free-form fabrication (SFF)-based scaffolds seeded with osteoblasts, derived from human adipose-derived stem cells, and human umbilical vein endothelial cells (HUVECs) to enhance osteogenesis. To accomplish this goal, SFF-based polycaprolactone/poly-lactic-co-glycolic acid/tricalcium phosphate scaffolds were fabricated using a multihead deposition system, which is one SFF technique. The blended polycaprolactone/poly-lactic-co-glycolic acid/TCP scaffolds were seeded with human osteoblasts and HUVECs and implanted into calvaria defects in rats.
View Article and Find Full Text PDFA novel protocol for the synthesis of biocompatible and degradation controlled poly(lactic-co-glycolic acid) grafted hyaluronic acid (HA-PLGA) was successfully developed for periodontal barrier applications. HA was chemically modified with adipic acid dihydrazide (ADH) in the mixed solvent of water and ethanol, which resulted in a high degree of HA modification up to 85 mol.%.
View Article and Find Full Text PDFScaffolds composed of biodegradable polymers and biocompatible ceramics are being used as substitutes for tissue engineering. In the development of such techniques, scaffolds with a controllable pore size and porosity were manufactured using solid free-form fabrication (SFF) methods to investigate the effects of cell interactions such as cell proliferation and differentiation. In this study, we describe the adhesion of human bone marrow stromal cells (hBMSCs) and proliferation characteristics of various scaffolds, which consist of biodegradable materials, fabricated using a multi-head deposition system (MHDS) that we developed.
View Article and Find Full Text PDFWe believe [(Th2F5)(NC7H5O4)2(H2O)][NO3] is the first three-dimensionally connected, actinide-organic framework solid. The structure is composed of thorium oxyfluoride chains, each of which connected to pyridinedicarboxylate groups to give a 3D cross-linked network with cavities containing nitrate anions.
View Article and Find Full Text PDFOrganically templated thorium compounds were synthesized for the first time under hydrothermal conditions; the piperazine containing compound consists of 2-D layers, while the 2-methylpiperazine phase contains unprecedented 1-D chains of face-sharing ThF9 polyhedra.
View Article and Find Full Text PDF